Human-in-the-loop optimization has made great progress to improve the performance of wearable robotic devices and become an effective customized assistance strategy. However, a lengthy period (several hours) of continuous walking for iterative optimization for each individual makes it less practical, especially for disabled people, who may not endure this process. In this paper, we provide a muscle-activity-based human-in-the-loop optimization strategy that can reduce the time spent on collecting biosignals during each iteration from around 120 s to 25 s. Both Bayesian and Covariance Matrix Adaptive Evolution Strategy (CMA-ES) optimization algorithms were adopted on a portable hip exoskeleton to generate optimal assist torque patterns, optimizing rectus femoris muscle activity. Four volunteers were recruited for exoskeleton-assisted walking trials. As a result, using human-in-the-loop optimization led to muscle activity reduction of 33.56% and 41.81% at most when compared to walking without and with the hip exoskeleton, respectively. Furthermore, the results of human-in-the-loop optimization indicate that three out of four participants achieved superior outcomes compared to the predefined assistance patterns. Interestingly, during the optimization stage, the order of the two typical optimizers, i.e., Bayesian and CMA-ES, did not affect the optimization results. The results of the experiment have confirmed that the assistance pattern generated by muscle-activity-based human-in-the-loop strategy is superior to predefined assistance patterns, and this strategy can be achieved more rapidly than the one based on metabolic cost.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192560PMC
http://dx.doi.org/10.3389/fbioe.2023.1006326DOI Listing

Publication Analysis

Top Keywords

human-in-the-loop optimization
20
muscle activity
12
hip exoskeleton
12
optimization
9
portable hip
8
muscle-activity-based human-in-the-loop
8
predefined assistance
8
assistance patterns
8
human-in-the-loop
6
strategy
5

Similar Publications

Advancements in wearable robots aim to improve user motion, motor control, and overall experience by minimizing energetic cost (EC). However, EC is challenging to measure and it is typically indirectly estimated through respiratory gas analysis. This study introduces a novel EMG-based objective function that captures individuals' natural energetic expenditure during walking.

View Article and Find Full Text PDF

Despite the significant advancements of liver surgery in the last few decades, the survival rate of patients with liver and pancreatic cancers has improved by only 10% in 30 years. Precision medicine offers a patient-centered approach, which, when combined with machine learning, could enhance decision making and treatment outcomes in surgical management of ihCC. This study aims to develop a decision support model to optimize treatment strategies for patients with ihCC, a prevalent primary liver cancer.

View Article and Find Full Text PDF

This study leverages and upgrades the capabilities of computer-aided retrosynthesis (CAR) in the systematic development of greener and more efficient total synthetic routes for the active pharmaceutical ingredient (API) IM-204, a helicase-primase inhibitor that demonstrated enhanced efficacy against Herpes simplex virus (HSV) infections. Using various CAR tools, several total synthetic routes were uncovered, evaluated, and experimentally validated, with the goal to maximize selectivity and yield and minimize the environmental impact. The CAR tools revealed several synthetic options under different constraints, which can overperform the patented synthetic route used as a reference.

View Article and Find Full Text PDF

Soft exoskeletons (exosuits) are expected to provide a comfortable wearing experience and compliant assistance compared with traditional rigid exoskeleton robots. In this paper, an exosuit with twisted string actuators (TSAs) is developed to provide high-strength and variable-stiffness actuation for hemiplegic patients. By formulating the analytic model of the TSA and decoding the human impedance characteristic, the human-exosuit coupled dynamic model is constructed.

View Article and Find Full Text PDF

Machine learning (ML) systems have enabled the modelling of quantitative structure-property relationships (QSPR) and structure-activity relationships (QSAR) using existing experimental data to predict target properties for new molecules. These property predictors hold significant potential in accelerating drug discovery by guiding generative artificial intelligence (AI) agents to explore desired chemical spaces. However, they often struggle to generalize due to the limited scope of the training data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!