The aim of this paper is to introduce a field of study that has emerged over the last decade, called Bayesian mechanics. Bayesian mechanics is a probabilistic mechanics, comprising tools that enable us to model systems endowed with a particular partition (i.e. into particles), where the internal states (or the trajectories of internal states) of a particular system encode the parameters of beliefs about external states (or their trajectories). These tools allow us to write down mechanical theories for systems that look as if they are estimating posterior probability distributions over the causes of their sensory states. This provides a formal language for modelling the constraints, forces, potentials and other quantities determining the dynamics of such systems, especially as they entail dynamics on a space of beliefs (i.e. on a statistical manifold). Here, we will review the state of the art in the literature on the free energy principle, distinguishing between three ways in which Bayesian mechanics has been applied to particular systems (i.e. path-tracking, mode-tracking and mode-matching). We go on to examine a duality between the free energy principle and the constrained maximum entropy principle, both of which lie at the heart of Bayesian mechanics, and discuss its implications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198254 | PMC |
http://dx.doi.org/10.1098/rsfs.2022.0029 | DOI Listing |
Brief Bioinform
November 2024
Institute of Statistics and Big Data, Renmin University of China, No. 59 Zhongguancun Street, 100872 Beijing, China.
The spatial transcriptomics is a rapidly evolving biological technology that simultaneously measures the gene expression profiles and the spatial locations of spots. With progressive advances, current spatial transcriptomic techniques can achieve the cellular or even the subcellular resolution, making it possible to explore the fine-grained spatial pattern of cell types within one tissue section. However, most existing cell spatial clustering methods require a correct specification of the cell type number, which is hard to determine in the practical exploratory data analysis.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA.
Med Intensiva (Engl Ed)
December 2024
IRCCS Policlinico San Martino, Genova, Italy; Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy.
Objective: The relationship between different power equations and the severity of acute respiratory distress syndrome (ARDS) remains unclear. This study aimed to evaluate various power equations: total mechanical power, total elastic power (comprising elastic static and elastic dynamic power), and resistive power, in a cohort of mechanically ventilated patients with and without ARDS. Bayesian analysis was employed to refine estimates and quantify uncertainty by incorporating a priori distributions.
View Article and Find Full Text PDFAm J Emerg Med
December 2024
Department of Anesthesia and Intensive care, University of Pisa, Pisa, Italy.
Background: Various regional anesthesia techniques have been studied for blunt chest wall trauma over the past decades, but their impact on patient outcomes remains unclear. This systematic review and Bayesian network meta-analysis aimed to identify the most effective regional anesthesia techniques for different outcomes in blunt thoracic trauma patients.
Methods: We searched Medline, EMBASE, Scopus, and Cochrane databases for randomized controlled trials comparing regional anesthesia techniques (thoracic epidural, erector spinae plane block, serratus anterior plane block, intercostal block, paravertebral block, intrapleural block, retrolaminar block) and standard intravenous analgesia.
Trials
December 2024
Department of Critical Care, Keenan Research Centre, St Michael's Hospital, and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.
Background: We previously published the protocol and statistical analysis plan for a randomized controlled trial of Proportional Assist Ventilation for Minimizing the Duration of Mechanical Ventilation: the PROMIZING study in Trials ( https://doi.org/10.1186/s13063-023-07163-w ).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!