The cinnamate functionalization of cellulose nanocrystals (Cin-CNCs) was investigated as a potential organic reinforcing and UV-shielding agent in polylactic acid (PLA) films. Acid hydrolysis was used to extract cellulose nanocrystals (CNCs) from pineapple leaves. Through esterification with cinnamoyl chloride, the cinnamate group was grafted onto the CNC surface and the resulting Cin-CNCs were incorporated in PLA films as reinforcing and UV-shielding agents. The PLA nanocomposite films were prepared using a solution-casting method and were tested for mechanical/thermal properties, gas permeability, and UV absorption. Importantly, the functionalization of cinnamate on CNCs substantially improved the dispersion of fillers on the PLA matrix. The PLA films containing 3 wt% Cin-CNCs exhibited high transparency and UV absorption in the visible region. On the other hand, PLA films filled with pristine CNCs did not exhibit any UV-shielding properties. The mechanical properties revealed that adding 3 wt% Cin-CNCs to PLA increased its tensile strength and Young's modulus by 70% and 37%, respectively, compared to neat PLA. In addition, the incorporation of Cin-CNCs substantially improved water vapor and oxygen permeability. At 3 wt% Cin-CNC addition, the water vapor and oxygen permeability of PLA films were reduced by 54% and 55%, respectively. This study demonstrated the great potential in utilizing Cin-CNCs as effective gas barriers, dispersible nanoparticles, and UV-absorbing, nano-reinforcing agents in PLA films.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10196887PMC
http://dx.doi.org/10.1039/d3ra02693kDOI Listing

Publication Analysis

Top Keywords

pla films
24
cellulose nanocrystals
12
pla
10
functionalization cellulose
8
pineapple leaves
8
agent polylactic
8
polylactic acid
8
reinforcing uv-shielding
8
agents pla
8
wt% cin-cncs
8

Similar Publications

Extension of shelf-life of mangoes using PLA-cardanol-amine functionalized graphene active films.

Int J Biol Macromol

January 2025

Food Packaging Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India. Electronic address:

Multifunctional PLA films were fabricated through the solution casting method by incorporating cardanol oil (CA) and amine-functionalized graphene (AFG). The effect of the CA, and AFG on the structural, mechanical, thermal, thermo-mechanical and antioxidant properties of PLA films were investigated. FTIR analysis of PLA-CA films showed distinct peak positions at 1590 cm corresponding to the aromatic CC bonds of CA, showing that CA is compatible with the PLA.

View Article and Find Full Text PDF

Packaging films based on natural biopolymers often suffer from inadequate barrier and mechanical properties. To address these challenges, multilayer films have emerged as potential solutions. In this study, we prepared bilayer films using bitter vetch seed protein (BVSP) and polylactic acid (PLA).

View Article and Find Full Text PDF

A screening method for polyester films-degrading microorganisms and enzymes.

J Hazard Mater

January 2025

Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, Vilnius 10257, Lithuania.

Enzymatic degradation of plastic pollution offers a promising environmentally friendly waste management strategy, however, suitable biocatalysts must be screened and developed. Traditional screening methods using soluble or solubilised polymers do not necessarily identify enzymes that are effective against solid or crystalline polymers. This study presents a simple, time-saving and cost-effective method for identifying microorganisms and enzymes capable of degrading polymeric films.

View Article and Find Full Text PDF

Poly(lactic) (PLA) is a biodegradable material obtained from renewable resources and is recognized as a safe biopolymer by the Food and Drug Administration. PLA expresses excellent mechanical and moldability attributes nonetheless poor elasticity/functionality limits its widespread utilization. One approach to compensate for this is chemical surface modification through free radical grafting with small organic molecules like maleic anhydride (MA).

View Article and Find Full Text PDF

Electrospinning is a versatile technique for obtaining nano/micro fibers which are able to significantly change the active properties of composite materials and bring in new dimensions to agri-food applications. Composite bio-based packaging materials obtained from whey proteins, functionalized with thyme essential oil (TEO) and reinforced by electrospun polylactic acid (PLA) fibers, represent a promising solution for developing new active food packaging using environmentally friendly materials. The aim of this study is to obtain and characterize one-side-active composite films covered with a PLA fiber mat: (i) WF/G1, WF/G2, and WF/G3 resulting from electrospinning with one needle at different electrospinning times of 90, 150, and 210 min, respectively, and (ii) WF/G4 obtained with two face-to-face needles after 210 min of electrospinning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!