Formate dehydrogenases (Fdhs) mediate the oxidation of formate to carbon dioxide and concomitant reduction of nicotinamide adenine dinucleotide (NAD ). The low cost of the substrate formate and importance of the product NADH as a cellular source of reducing power make this reaction attractive for biotechnological applications. However, the majority of Fdhs are sensitive to inactivation by thiol-modifying reagents. In this study, we report a chemically resistant Fdh (Fdh ) from the soil bacterium Starkeya novella strictly specific for NAD . We present its recombinant overproduction, purification and biochemical characterization. The mechanistic basis of chemical resistance was found to be a valine in position 255 (rather than a cysteine as in other Fdhs) preventing the inactivation by thiol-modifying compounds. To further improve the usefulness of Fdh as for generating reducing power, we rationally engineered the protein to reduce the coenzyme nicotinamide adenine dinucleotide phosphate (NADP ) with better catalytic efficiency than NAD . The single mutation D221Q enabled the reduction of NADP with a catalytic efficiency k /K of 0.4 s ·mm at 200 mm formate, while a quadruple mutant (A198G/D221Q/H379K/S380V) resulted in a fivefold increase in catalytic efficiency for NADP compared with the single mutant. We determined the cofactor-bound structure of the quadruple mutant to gain mechanistic evidence behind the improved specificity for NADP . Our efforts to unravel the key residues for the chemical resistance and cofactor specificity of Fdh may lead to wider use of this enzymatic group in a more sustainable (bio)manufacture of value-added chemicals, as for instance the biosynthesis of chiral compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.16871DOI Listing

Publication Analysis

Top Keywords

chemical resistance
12
catalytic efficiency
12
resistance cofactor
8
cofactor specificity
8
starkeya novella
8
nicotinamide adenine
8
adenine dinucleotide
8
reducing power
8
inactivation thiol-modifying
8
quadruple mutant
8

Similar Publications

Evidence for a metal-bosonic insulator-superconductor transition in compressed sulfur.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.

The abrupt drop of resistance to zero at a critical temperature is a key signature of the current paradigm of the metal-superconductor transition. However, the emergence of an intermediate bosonic insulating state characterized by a resistance peak preceding the onset of the superconducting transition has challenged this traditional understanding. Notably, this phenomenon has been predominantly observed in disordered or chemically doped low-dimensional systems, raising intriguing questions about the generality of the effect and its underlying fundamental physics.

View Article and Find Full Text PDF

Due to incessant contamination of the groundwater system near the dumpsite in southwestern Nigeria Basement Complex, this study seeks to evaluate the impact of the Odogbo dumpsite on the local groundwater system by integrating geophysical and geochemical methodologies. Aeromagnetic data covering the study area was acquired, processed, and enhanced to delineate basement features that could potentially be passing plumes to the groundwater system. Concurrently, geoelectric methods using 2-D dipole-dipole imaging and vertical electrical sounding (VES) were utilized to characterize the vulnerability indices of the lithologies underlying the dumpsite.

View Article and Find Full Text PDF

Nanoscale Titanium Oxide Memristive Structures for Neuromorphic Applications: Atomic Force Anodization Techniques, Modeling, Chemical Composition, and Resistive Switching Properties.

Nanomaterials (Basel)

January 2025

Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, Taganrog 347922, Russia.

This paper presents the results of a study on the formation of nanostructures of electrochemical titanium oxide for neuromorphic applications. Three anodization synthesis techniques were considered to allow the formation of structures with different sizes and productivity: nanodot, lateral, and imprint. The mathematical model allowed us to calculate the processes of oxygen ion transfer to the reaction zone; the growth of the nanostructure due to the oxidation of the titanium film; and the formation of TiO, TiO, and TiO oxides in the volume of the growing nanostructure and the redistribution of oxygen vacancies and conduction channel.

View Article and Find Full Text PDF

Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports the synthesis and characterization of zwitterionic monomers and polymers through the modification of linear, vinyl, and aromatic heterocyclic functional groups via reaction with 1,3-propanesultone. Four zwitterionic polymers with varying molecular structures-ranging from linear to five and six membered ring systems-were synthesized: poly(sulfobetaine methacrylamide) (pSBMAm), poly(sulfobetaine-1-vinylimidazole) (pSB1VI), poly(sulfobetaine-2-vinylpyridine) (pSB2VP), and poly(sulfobetaine-4-vinylpyridine) (pSB4VP).

View Article and Find Full Text PDF

Fungal quorum sensing molecules as potential drugs in the treatment of chronic wounds and their delivery.

Expert Opin Drug Deliv

January 2025

Smart Materials, Istituto Italiano di Tecnologia, Genova, Italy.

Introduction: Chronic non-healing wounds have emerged as a significant global healthcare challenge. Biofilm induced wound infections has been widely acknowledged. Despite the advanced understanding of biofilm formation, the existing approaches for diagnosing biofilms in wounds remain considerably suboptimal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!