During freeze/thaw, cells are exposed to mechanical, thermal, chemical, and osmotic stresses, which cause loss of viability and function. Cryopreservation agents such as dimethyl sulfoxide (DMSO) are deployed to minimize freeze/thaw damage. However, there is a pressing need to eliminate DMSO from cryopreservation solutions due to its adverse effects. This is of the highest priority especially for cryopreservation of infusible/transplantable cell therapy products. In order to address this issue, we introduce reversible encapsulation in agarose hydrogels in the presence of the membrane-impermeable cryoprotectant, trehalose, as a viable, safe, and effective cryopreservation method. Our findings, which are supported by IR spectroscopy and differential scanning calorimetry analyses, demonstrate that encapsulation in 0.75% agarose hydrogels containing 10-20% trehalose inhibits mechanical damage induced by eutectic phase change, devitrification, and recrystallization, resulting in post-thaw viability comparable to the gold standard 10% DMSO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330259 | PMC |
http://dx.doi.org/10.1021/acsabm.3c00098 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!