Photocatalytic reduction of CO into valuable chemicals or fuels is considered a promising solution to mitigate the energy crisis. In this work, efficient CO to CO conversion was achieved, accompanied by a class of trinuclear Fe clusters as photocatalysts. Under optimal conditions, the highest catalytic rate could be up to 140.9 μmol/h in 6 h with the assistance of photosensitizers (PS). The trinuclear Fe Clusters can be used as secondary building units to construct Fe-based metal-organic frameworks (MOFs). However, the catalytic activity of Fe-based MOFs is weaker than that of clusters in both the cases of extra PS-assisted MOFs and integrated PS into MOFs. The simpler synthesis, lower cost, and higher catalytic activity make the Fe clusters a better catalyst. Additionally, steady-state fluorescence tests confirmed the transfer of photogenerated electrons from PS to the clusters during the photocatalytic reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c02298 | DOI Listing |
Chem Commun (Camb)
December 2024
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, P. R. China.
Natural gas is recognized as a transitional clean energy fuel to address a variety of environmental problems. Identifying porous adsorbents with high-capacity low-temperature methane adsorption performances is crucial for advancing next-generation technologies for efficiently utilizing boil-off gas, inevitablely generated from liquefied natural gas systems. Herein, we synthesized highly porous metal-organic frameworks (MOFs)-TBPP-MOFs with a geometric mismatch strategy by combining seemingly incompatible trinuclear clusters with octatopic pyrene-based ligands.
View Article and Find Full Text PDFDalton Trans
November 2024
Department of Chemistry, University of Patras, 26504 Patras, Greece.
A relatively unexplored approach in heterometallic chemistry of transition metals and lanthanides has been developed toward the controlled synthesis of a new family of linear heterotrinuclear Ln(III)-Pd(II)-Ln(III) complexes with the general formula [LnPd(pao)(NO)(MeOH)(HO)]·[Pd(pao)], where Ln = Dy (2), Gd (3), Er (4) and Yb (5). This strategy was based on the diamagnetic 'metalloligand' [Pd(pao)] (1), where pao is the anion of 2-pyridinealdoxime, containing two dangling oximate O-atoms which were to each other and available for binding with oxophilic lanthanide ions. Because of their -configuration, the [Pd(pao)] 'metalloligand' was able to direct the binding of two {Ln(NO)(MeOH)(HO)} units on opposite sites, thus yielding the reported trinuclear {Ln-Pd-Ln} clusters.
View Article and Find Full Text PDFAdv Mater
November 2024
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, P. R. China.
2D metal-organic frameworks (2D-MOFs) are an important class of functional porous materials. However, the low porosity and surface area of 2D-MOFs have greatly limited their functionalities and applications. Herein, the rational synthesis of a class of mos-MOFs with molybdenum disulfide (mos) net based on the assembly of trinuclear metal clusters and 3-connected tripodal organic ligands is reported.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India.
A novel heterometallic trinuclear cluster [CuMn(cpdp)(NO)(Cl)] () has been designed and synthesized by employing a molecular library approach that uses CuCl·2HO and Mn(NO)·4HO as inorganic metal salts and Hcpdp as a multifunctional organic scaffold (Hcpdp = ,'-bis[2-carboxybenzomethyl]-,'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol). This heterometallic cluster has emerged as an unusual ferromagnetic material and promising electrocatalyst for hydrogen evolution reaction (HER) in the domain of inorganic and materials chemistry. Crystal structure analysis establishes the structural arrangement of , revealing a butterfly-like topology with an unusual seven-coordinated Mn(II) center.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Sulfur dioxide (SO) is an important industrial feedstock that can be directly utilized or catalytically transformed to value-added chemicals such as sulfuric acid. The development of regenerable porous sorbents for the highly efficient storage and energy-minimal release of toxic SO operating under ambient conditions has attracted growing interest. Herein, we report the topology-guided construction of highly porous -type metal-organic frameworks (MOFs) through a counterintuitive modulator-directed catenation control approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!