Trinuclear Fe Clusters for Highly Efficient CO Photoreduction.

ACS Appl Mater Interfaces

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

Published: June 2023

Photocatalytic reduction of CO into valuable chemicals or fuels is considered a promising solution to mitigate the energy crisis. In this work, efficient CO to CO conversion was achieved, accompanied by a class of trinuclear Fe clusters as photocatalysts. Under optimal conditions, the highest catalytic rate could be up to 140.9 μmol/h in 6 h with the assistance of photosensitizers (PS). The trinuclear Fe Clusters can be used as secondary building units to construct Fe-based metal-organic frameworks (MOFs). However, the catalytic activity of Fe-based MOFs is weaker than that of clusters in both the cases of extra PS-assisted MOFs and integrated PS into MOFs. The simpler synthesis, lower cost, and higher catalytic activity make the Fe clusters a better catalyst. Additionally, steady-state fluorescence tests confirmed the transfer of photogenerated electrons from PS to the clusters during the photocatalytic reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c02298DOI Listing

Publication Analysis

Top Keywords

trinuclear clusters
12
catalytic activity
8
clusters
5
clusters highly
4
highly efficient
4
efficient photoreduction
4
photoreduction photocatalytic
4
photocatalytic reduction
4
reduction valuable
4
valuable chemicals
4

Similar Publications

Porous MOFs with geometric mismatch between trimers and octatopic pyrene-based ligands for low-temperature methane storage.

Chem Commun (Camb)

December 2024

Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, P. R. China.

Natural gas is recognized as a transitional clean energy fuel to address a variety of environmental problems. Identifying porous adsorbents with high-capacity low-temperature methane adsorption performances is crucial for advancing next-generation technologies for efficiently utilizing boil-off gas, inevitablely generated from liquefied natural gas systems. Herein, we synthesized highly porous metal-organic frameworks (MOFs)-TBPP-MOFs with a geometric mismatch strategy by combining seemingly incompatible trinuclear clusters with octatopic pyrene-based ligands.

View Article and Find Full Text PDF

A relatively unexplored approach in heterometallic chemistry of transition metals and lanthanides has been developed toward the controlled synthesis of a new family of linear heterotrinuclear Ln(III)-Pd(II)-Ln(III) complexes with the general formula [LnPd(pao)(NO)(MeOH)(HO)]·[Pd(pao)], where Ln = Dy (2), Gd (3), Er (4) and Yb (5). This strategy was based on the diamagnetic 'metalloligand' [Pd(pao)] (1), where pao is the anion of 2-pyridinealdoxime, containing two dangling oximate O-atoms which were to each other and available for binding with oxophilic lanthanide ions. Because of their -configuration, the [Pd(pao)] 'metalloligand' was able to direct the binding of two {Ln(NO)(MeOH)(HO)} units on opposite sites, thus yielding the reported trinuclear {Ln-Pd-Ln} clusters.

View Article and Find Full Text PDF

Two-Periodic MoS-Type Metal-Organic Frameworks with Intrinsic Intralayer Porosity for High-Capacity Water Sorption.

Adv Mater

November 2024

Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, P. R. China.

2D metal-organic frameworks (2D-MOFs) are an important class of functional porous materials. However, the low porosity and surface area of 2D-MOFs have greatly limited their functionalities and applications. Herein, the rational synthesis of a class of mos-MOFs with molybdenum disulfide (mos) net based on the assembly of trinuclear metal clusters and 3-connected tripodal organic ligands is reported.

View Article and Find Full Text PDF

A novel heterometallic trinuclear cluster [CuMn(cpdp)(NO)(Cl)] () has been designed and synthesized by employing a molecular library approach that uses CuCl·2HO and Mn(NO)·4HO as inorganic metal salts and Hcpdp as a multifunctional organic scaffold (Hcpdp = ,'-bis[2-carboxybenzomethyl]-,'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol). This heterometallic cluster has emerged as an unusual ferromagnetic material and promising electrocatalyst for hydrogen evolution reaction (HER) in the domain of inorganic and materials chemistry. Crystal structure analysis establishes the structural arrangement of , revealing a butterfly-like topology with an unusual seven-coordinated Mn(II) center.

View Article and Find Full Text PDF

Sulfur dioxide (SO) is an important industrial feedstock that can be directly utilized or catalytically transformed to value-added chemicals such as sulfuric acid. The development of regenerable porous sorbents for the highly efficient storage and energy-minimal release of toxic SO operating under ambient conditions has attracted growing interest. Herein, we report the topology-guided construction of highly porous -type metal-organic frameworks (MOFs) through a counterintuitive modulator-directed catenation control approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!