A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biodegradable Imprinted Polymer Based on ZIF-8/DOX-HA for Synergistically Targeting Prostate Cancer Cells and Controlled Drug Release with Multiple Responses. | LitMetric

Improving the drug loading and delivery efficiency of biodegradable nanomaterials used for targeting prostate cancer (PCa) remains a challenging task. To accomplish this task, herein, a new surface molecularly imprinted polymer (ZIF-8/DOX-HA@MIP) was designed and constructed with a hyaluronic acid (HA)-modified zeolitic imidazolate framework-8 (ZIF-8) metal-organic framework loaded with doxorubicin (DOX) as a substrate and a responsive molecularly imprinted polymer film as a shell. Owing to the large surface area of ZIF-8, DOX was successfully loaded into the ZIF-8/DOX-HA@MIP with a high drug loading efficiency (more than 88%). In vitro cell experiments have shown that the strengthened targeting ability of ZIF-8/DOX-HA@MIP to PCa cells was realized through the synergistic effect of HA and the molecularly imprinted membrane. Under the condition of simulated tumor microenvironment solution, Zn species were released and the particle size of ZIF-8/DOX-HA@MIP decreased gradually by the synergistic effect of hyaluronidase, pH, and glutathione, showing excellent biodegradability. In vivo antitumor research indicated the excellent antitumor activity and biocompatibility of ZIF-8/DOX-HA@MIP. The multifunctional ZIF-8/DOX-HA@MIP constructed herein provides a novel impetus for the development of targeted drug delivery in PCa treatment and a new strategy for treating other tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c02647DOI Listing

Publication Analysis

Top Keywords

imprinted polymer
12
molecularly imprinted
12
targeting prostate
8
prostate cancer
8
drug loading
8
zif-8/dox-ha@mip
6
biodegradable imprinted
4
polymer based
4
based zif-8/dox-ha
4
zif-8/dox-ha synergistically
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!