[Screening and identification of a polyurethane-degrading bacterium G-11 and its plastic degradation characteristics].

Sheng Wu Gong Cheng Xue Bao

Key Laboratory of Agricultural Environment Microbiology of the Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.

Published: May 2023

Polyurethane (PUR) plastics is widely used because of its unique physical and chemical properties. However, unreasonable disposal of the vast amount of used PUR plastics has caused serious environmental pollution. The efficient degradation and utilization of used PUR plastics by means of microorganisms has become one of the current research hotspots, and efficient PUR degrading microbes are the key to the biological treatment of PUR plastics. In this study, an Impranil DLN-degrading bacteria G-11 was isolated from used PUR plastic samples collected from landfill, and its PUR-degrading characteristics were studied. Strain G-11 was identified as sp. through 16S rRNA gene sequence alignment. PUR degradation experiment showed that the weight loss rate of the commercial PUR plastics upon treatment of strain G-11 was 4.67%. Scanning electron microscope (SEM) showed that the surface structure of G-11-treated PUR plastics was destroyed with an eroded morphology. Contact angle and thermogravimetry analysis (TGA) showed that the hydrophilicity of PUR plastics increased along with decreased thermal stability upon treatment by strain G-11, which were consistent with the weight loss and morphological observation. These results indicated that strain G-11 isolated from landfill has potential application in biodegradation of waste PUR plastics.

Download full-text PDF

Source
http://dx.doi.org/10.13345/j.cjb.220976DOI Listing

Publication Analysis

Top Keywords

pur plastics
32
strain g-11
16
pur
11
plastics
8
g-11 isolated
8
weight loss
8
treatment strain
8
g-11
6
[screening identification
4
identification polyurethane-degrading
4

Similar Publications

[Progress in the Study of Occurrence, Distribution, Material Flows, and Environmental Release of Substances of Very High Concern (SVHCs) in Plastics].

Huan Jing Ke Xue

December 2024

State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.

Plastic additives provide plastics with excellent functions such as plasticizing, flame retardant, and antioxidant properties and are widely used in various plastics. Of these, 189 plastic additives have been included in the European Union's Candidate List of substances of very high concern (SVHCs) due to their potential environmental and health risks. These SVHCs are mainly used in PVC, PUR, and PE plastics and in the packaging, automotive, construction, electronic and electrical equipment, and textile sectors.

View Article and Find Full Text PDF

Global plastic production exceeded 400 million tons in 2022, urgently demanding improved waste management and recycling strategies for a circular plastic economy. While the enzymatic hydrolysis of polyethylene terephthalate (PET) has become feasible on industrial scales, efficient enzymes targeting other hydrolyzable plastic types, such as polyurethanes (PURs), are lacking. Recently, enzymes of the amidase signature (AS) family, capable of cleaving urethane bonds in a polyether-PUR analog and a linear polyester-PUR, have been identified.

View Article and Find Full Text PDF

Epicardial transplantation of antioxidant polyurethane scaffold based human amniotic epithelial stem cell patch for myocardial infarction treatment.

Nat Commun

October 2024

Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China.

Myocardial infarction (MI) is a leading cause of death globally. Stem cell therapy is considered a potential strategy for MI treatment. Transplantation of classic stem cells including embryonic, induced pluripotent and cardiac stem cells exhibited certain repairing effect on MI via supplementing cardiomyocytes, however, their clinical applications were blocked by problems of cell survival, differentiation, functional activity and also biosafety and ethical concerns.

View Article and Find Full Text PDF

An overview on polyurethane-degrading enzymes.

Biotechnol Adv

December 2024

Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, F-31077 Toulouse Cedex, France. Electronic address:

Polyurethanes (PUR) are durable synthetic polymers widely used in various industries, contributing significantly to global plastic consumption. PUR pose unique challenges in terms of degradability and recyclability, as they are characterised by intricate compositions and diverse formulations. Additives and proprietary structures used in commercial PUR formulations further complicate recycling efforts, making the effective management of PUR waste a daunting task.

View Article and Find Full Text PDF

In Nigeria, limited research has been conducted on Microplastics (MPs) in inland rivers, necessitating a comprehensive assessment to understand the extent of contamination. This study aimed to assess the abundance, distribution, and composition of MPs in fishes, sediment, and water from inland rivers across Nigeria's six geopolitical zones. Samples were collected from selected rivers in each geopolitical zone (Rivers Yauri, Benue, Argungu, Jamare, Ogun, Ethiope and Orashi).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!