Thermal hydrolysis of sewage sludge: Improvement in biogas generation and prediction of global warming potential.

Waste Manag Res

Department of Environmental Science and Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.

Published: January 2024

Anaerobic digestion (AD) is a prominent treatment method for the sludge produced from sewage treatment plants. Poor solid reduction and longer retention time are the main drawbacks of AD. Thermal hydrolysis (TH) is a potential pretreatment method for solubilization of sewage sludge (SS) solids thereby improving biogas production during AD post-treatment. In this study, the SS sample (total solids = 1.75 wt% and total chemical oxygen demand (COD) = 15,450 mg L) was subjected to TH pretreatment (temperature = 140-180°C and reaction time = 60 minutes) in a 0.7-L capacity stainless-steel high-pressure reactor. At a reaction temperature of 180°C, the maximum solid solubilization (total dissolved solids = 4652 mg L) and improved dewaterability (time to filter = 4.7 s.L g) were observed. The biochemical methane potential test results showed almost doubling of methane generation from 145 to 284 mL gCOD after TH pretreatment at 180°C. The life cycle assessment approach was used to compare various SS treatment and disposal scenarios, two of which included hydrothermal pretreatment. The scenarios involving hydrothermal pretreatments showed the least global warming potential.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0734242X231171044DOI Listing

Publication Analysis

Top Keywords

thermal hydrolysis
8
sewage sludge
8
global warming
8
warming potential
8
hydrolysis sewage
4
sludge improvement
4
improvement biogas
4
biogas generation
4
generation prediction
4
prediction global
4

Similar Publications

There is an ever-increasing demand for novel plant proteins that are non-allergenic, nutritionally complete, adequately functional, and can be sustainably sourced. RuBisCo is a protein that fulfills these requirements and can be sourced from alfalfa (Medicago sativa). Therefore, this study investigated several techniques to adequately extract alfalfa protein.

View Article and Find Full Text PDF

Rice husk biowaste derived microcrystalline cellulose reinforced sustainable green composites: A comprehensive characterization for lightweight applications.

Int J Biol Macromol

January 2025

Natural Composites Research Group Lab, Department of Mechanical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand.

This study addresses the issue of waste generation within the food industry, focusing on the conversion of rice husk waste into value-added products. The investigation involves a comprehensive characterization of microcrystalline cellulose extracted from the rice husk and reinforcing them in bio-epoxy resin to determine its feasibility in producing ecofriendly products. The dried rice husk waste was made to undergo a series of treatments, including alkali, acid hydrolysis, and bleaching for extracting high purity microcrystalline cellulose.

View Article and Find Full Text PDF

The creation of polymer composites with better performance is a crucial thing. The cellulosic filler material gain popularity in polymer composites. In this study, aquatic plant Pistia stratiote leaves were used as a raw material for cellulose extraction.

View Article and Find Full Text PDF

Selenopeptides can be ideal dietary selenium (Se) supplements for humans. Currently, rice is not used much as a source of selenopeptides. Here, we executed the selenopeptidomics analysis of selenium-enriched rice protein hydrolysates using the full MS-dd-MS2 acquisition method and identified selenopeptides, including L{Se-Met}AK and other selenopeptides.

View Article and Find Full Text PDF

Sprouts and microgreens which belong to the Brassicaceae family contain significantly more glucosinolates than mature vegetables, and their composition often differs too. These plant growth stages can be a valuable supplement of the aforementioned compounds in the diet. The content and proportion of individual glucosinolates in sprouts and microgreens can be regulated by modifying the length and temperature of cultivation, the type of light, the use of mineral compounds, elicitation, primming, and cold plasma as well as storage conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!