Blossoming of Polyenamine Catalysis in Asymmetric Synthesis: Scope and Future Applications.

Chem Asian J

School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Sector-30, Gandhinagar, 382030, India.

Published: July 2023

After the emergence of organocatalysis, the field of asymmetric synthesis has reached an exceptional level in this century. Asymmetric aminocatalysis, among other organocatalytic strategies, proceeded through LUMO-lowering iminium ion and HOMO-raising enamine ion activation has appeared as a powerful synthetic approach for realizing potential chiral building blocks from unmodified carbonyl compounds. Consequently, the concept of HOMO-raising activation strategy for a plethora of asymmetric transformations based on enamine, dienamine, and most recently trienamine, tetraenamine, and pentaenamine catalysis has been devised. In this mini-review article, we disclosed the recent progress accomplished in asymmetric aminocatalysis through polyenamine activation strategies for the functionalization of carbonyl compounds, and we covered the reports from 2014 to till date.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202300370DOI Listing

Publication Analysis

Top Keywords

asymmetric synthesis
8
asymmetric aminocatalysis
8
carbonyl compounds
8
asymmetric
5
blossoming polyenamine
4
polyenamine catalysis
4
catalysis asymmetric
4
synthesis scope
4
scope future
4
future applications
4

Similar Publications

The GRAS transcription factor OsGRAS2 negatively impacts salt tolerance in rice.

Plant Cell Rep

December 2024

Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.

Transcription factor OsGRAS2 regulates salt stress tolerance and yield in rice. Plant-specific GRAS transcription factors are involved in many different aspects of plant growth and development, as well as in biotic and abiotic stress responses, although whether and how they participate in salt stress tolerance in rice (Oryza sativa) remains unclear. A screen of a previously generated set of activation-tagged lines revealed that Activation Tagging Line 63 (AC63) displayed a salt stress-sensitive phenotype.

View Article and Find Full Text PDF

Total synthesis and target identification of marine cyclopiane diterpenes.

Nat Commun

December 2024

Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Marine cyclopianes are a family of diterpenoid with novel carbon skeleton and diverse biological activities. Herein, we report our synthetic and chemical proteomics studies of cyclopiane diterpenes which culminate in the asymmetric total synthesis of conidiogenones C, K and 12β-hydroxy conidiogenone C, and identification of Immunity-related GTPase family M protein 1 (IRGM1) as a cellular target. Our asymmetric synthesis commences from Wieland-Miescher ketone and features a sequential intramolecular Pauson-Khand reaction and gold-catalyzed Nazarov cyclization to rapidly construct the 6-5-5-5 tetracyclic skeleton.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) and their biocompatible conjugates find wide use as transducers in (bio)sensors and as Nano-pharmaceutics. The study of the interaction between AuNPs and proteins in representative application media helps to better understand their intrinsic behaviors. A multi-environment, multi-parameter screening strategy is proposed based on asymmetric flow field flow fractionation (AF4)-multidetector.

View Article and Find Full Text PDF

The strain-release-driven reactions of bicyclo[1.1.0]butanes (BCBs) have received significant attention from chemists.

View Article and Find Full Text PDF

Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discover that hippocampal and spinal cord motor neurons of mouse and human origin localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!