DNA methylation is a key mechanism in transcription regulation, and aberrant methylation is a common and important mechanism in tumor initiation, maintenance, and progression. To find genes that are aberrantly regulated by altered methylation in horse sarcoids, we used reduced representation bisulfite sequencing (RRBS) accompanied by RNA sequencing (RNA-Seq) for methylome (whole genome DNA methylation sequencing) and transcriptome profiling, respectively. We found that the DNA methylation level was generally lower in lesion samples than in controls. In the analyzed samples, a total of 14,692 differentially methylated sites (DMSs) in the context of CpG (where cytosine and guanine are separated by a phosphate), and 11,712 differentially expressed genes (DEGs) were identified. The integration of the methylome and transcriptome data suggests that aberrant DNA methylation may be involved in the deregulation of expression of the 493 genes in equine sarcoid. Furthermore, enrichment analysis of the genes demonstrated the activation of multiple molecular pathways related to extracellular matrix (ECM), oxidative phosphorylation (OXPHOS), immune response, and disease processes that can be related to tumor progression. The results provide further insight into the epigenetic alterations in equine sarcoids and provide a valuable resource for follow-up studies to identify biomarkers for predicting susceptibility to this common condition in horses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2023.05.008 | DOI Listing |
Sci Rep
December 2024
Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada.
Mitochondrial epigenetics, particularly mtDNA methylation, is a flourishing field of research. MtDNA methylation appears to play multiple roles, including regulating mitochondrial transcription, cell metabolism and mitochondrial inheritance. In animals, bivalves with doubly uniparental inheritance (DUI) of mitochondria are the exception to the rule of maternal mitochondrial inheritance since DUI also involve a paternal mtDNA transmitted from the father to sons.
View Article and Find Full Text PDFSci Rep
December 2024
School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
In recent years, immune checkpoint inhibitors (ICIs) has emerged as a fundamental component of the standard treatment regimen for patients with head and neck squamous cell carcinoma (HNSCC). However, accurately predicting the treatment effectiveness of ICIs for patients at the same TNM stage remains a challenge. In this study, we first combined multi-omics data (mRNA, lncRNA, miRNA, DNA methylation, and somatic mutations) and 10 clustering algorithms, successfully identifying two distinct cancer subtypes (CSs) (CS1 and CS2).
View Article and Find Full Text PDFJ Exp Bot
December 2024
Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Acad Sci, Šlechtitelů 31, Olomouc 77900, Czech Republic.
Cytosine (DNA) methylation plays important roles in silencing transposable elements, plant development, genomic imprinting, stress responses, and maintenance of genome stability. To better understand the functions of this epigenetic modification, several tools have been developed to manipulate DNA methylation levels. These include mutants of DNA methylation writers and readers, targeted manipulation of locus-specific methylation, and the use of chemical inhibitors.
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
December 2024
Mental Health Research Center, Moscow, Russia.
Mental disorders are complex illnesses with multifactorial etiologies involving genetic and environmental components. This review focuses on cellular models derived from the olfactory epithelium as a promising tool to study the molecular mechanisms of some neuropsychiatric diseases. The authors consider cell lines allowing the identification of potential biomarkers and pathogenetic mechanisms of schizophrenia, bipolar disorder, and Alzheimer's disease.
View Article and Find Full Text PDFGeroscience
December 2024
Department of Ecology, Evolution, and Marine Biology, Department of Molecular, Cellular, and Cell Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.
Significant links between aging and DNA methylation are emerging from recent studies. On the one hand, DNA methylation undergoes changes with age, a process termed as epigenetic drift. On the other hand, DNA methylation serves as a readily accessible and accurate biomarker for aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!