Airborne pollen grain detection from partially labelled data utilising semi-supervised learning.

Sci Total Environ

Department of Environmental Medicine, Faculty of Medicine, University Clinic of Augsburg & University of Augsburg, Augsburg, Germany; Terrestrial Ecology and Climate Change, Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece. Electronic address:

Published: September 2023

Airborne pollen monitoring has been conducted for more than a century now, as knowledge of the quantity and periodicity of airborne pollen has diverse use cases, like reconstructing historic climates and tracking current climate change, forensic applications, and up to warning those affected by pollen-induced respiratory allergies. Hence, related work on automation of pollen classification already exists. In contrast, detection of pollen is still conducted manually, and it is the gold standard for accuracy. So, here we used a new-generation, automated, near-real-time pollen monitoring sampler, the BAA500, and we used data consisting of both raw and synthesised microscope images. Apart from the automatically generated, commercially-labelled data of all pollen taxa, we additionally used manual corrections to the pollen taxa, as well as a manually created test set of bounding boxes and pollen taxa, so as to more accurately evaluate the real-life performance. For the pollen detection, we employed two-stage deep neural network object detectors. We explored a semi-supervised training scheme to remedy the partial labelling. Using a teacher-student approach, the model can add pseudo-labels to complete the labelling during training. To evaluate the performance of our deep learning algorithms and to compare them to the commercial algorithm of the BAA500, we created a manual test set, in which an expert aerobiologist corrected automatically annotated labels. For the novel manual test set, both the supervised and semi-supervised approaches clearly outperform the commercial algorithm with an F1 score of up to 76.9 % compared to 61.3 %. On an automatically created and partially labelled test dataset, we obtain a maximum mAP of 92.7 %. Additional experiments on raw microscope images show comparable performance for the best models, which potentially justifies reducing the complexity of the image generation process. Our results bring automatic pollen monitoring a step forward, as they close the gap in pollen detection performance between manual and automated procedure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.164295DOI Listing

Publication Analysis

Top Keywords

airborne pollen
12
pollen monitoring
12
pollen taxa
12
test set
12
pollen
11
partially labelled
8
microscope images
8
pollen detection
8
commercial algorithm
8
manual test
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!