Preferential association of polycyclic aromatic hydrocarbons (PAHs) with soil colloids at an e-waste recycling site: Implications for risk of PAH migration to subsurface environment.

Sci Total Environ

College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China. Electronic address:

Published: September 2023

Polycyclic aromatic hydrocarbon (PAH) contamination at e-waste recycling sites poses high ecological and human-health risks. Of note, PAHs in surface soils can be mobilized through colloid-facilitated transport, and may migrate into the subsurface and pollute groundwater. Here, we show that the colloids released from the soil samples at an e-waste recycling site in Tianjin, China contain high concentrations of PAHs, with total concentrations of 16 PAHs as high as 1520 ng/g dw. Preferential association of the PAHs with the colloids is observed, with the distribution coefficients of PAHs between colloids and bulk soil often above 10. Source diagnostic ratios show that soot-like particles are the main source of PAHs at the site, due to the incomplete combustion of fossil fuels, biomass, and electronic wastes during the e-waste dismantling practices. Due to their small sizes, a large fraction of these soot-like particles can be remobilized as colloids, and this explains the preferential association of PAHs with colloids. Moreover, the colloids-soil distribution coefficients are higher for the low-molecular-weight PAHs than for the high-molecular-weight ones, possibly attributable to the different binding routes/modes of these two groups of PAHs to the particles during combustion. Notably, the preferential association of PAHs with colloids is even more pronounced for the subsurface soils, corroborating that the presence of PAHs in the deeper soils is primarily the results of downward migration of PAH-bearing colloids. The findings highlight the important role of colloids as a vector for the subsurface transport of PAHs at e-waste recycling sites, and call for further understanding of colloid-facilitated transport of PAHs at e-waste recycling sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.164222DOI Listing

Publication Analysis

Top Keywords

e-waste recycling
20
preferential association
16
pahs colloids
16
pahs
14
recycling sites
12
association pahs
12
colloids
9
polycyclic aromatic
8
recycling site
8
colloid-facilitated transport
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!