Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Raffinose family oligosaccharides (RFOs) in food are the main factors causing flatulence in Irritable Bowel Syndrome (IBS) patients and the development of effective approaches for reducing food-derived RFOs is of paramount importance. In this study, polyvinyl alcohol (PVA)-chitosan (CS)-glycidyl methacrylate (GMA) immobilized α-galactosidase was prepared by the directional freezing-assisted salting-out technique, aimed to hydrolyze RFOs. SEM, FTIR, XPS, fluorescence and UV characterization results demonstrated that α-galactosidase was successfully cross-linked in the PVA-CS-GMA hydrogels, forming a distinct porous stable network through the covalent bond between the enzyme and the carrier. Mechanical performance and swelling capacity analysis illustrated that α-gal @ PVA-CS-GMA not only had suitable strength and toughness for longer durability, but also exhibited high water content and swelling capacity for better retention of catalytic activity. The enzymatic properties of α-gal @ PVA-CS-GMA showed an improved Km value, pH and temperature tolerance range, anti-enzymatic inhibitor (melibiose) activity compared to the free α-galactosidase and its reusability was at least 12 times with prolonged storage stability. Finally, it was successfully applied in the hydrolysis of RFOs in soybeans. These findings provide a new strategy for the development of α-galactosidase immobilization system to biological transform the RFOs components in the food for diet intervention of IBS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.124808 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!