A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using machine learning to predict cardiovascular risk using self-reported questionnaires: Findings from the 45 and Up Study. | LitMetric

Using machine learning to predict cardiovascular risk using self-reported questionnaires: Findings from the 45 and Up Study.

Int J Cardiol

School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia; NHMRC Clinical Trials Centre, Medical Foundation Building, The University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia. Electronic address:

Published: September 2023

Background: Machine learning has been shown to outperform traditional statistical methods for risk prediction model development. We aimed to develop machine learning-based risk prediction models for cardiovascular mortality and hospitalisation for ischemic heart disease (IHD) using self-reported questionnaire data.

Methods: The 45 and Up Study was a retrospective population-based study in New South Wales, Australia (2005-2009). Self-reported healthcare survey data on 187,268 participants without a history of cardiovascular disease was linked to hospitalisation and mortality data. We compared different machine learning algorithms, including traditional classification methods (support vector machine (SVM), neural network, random forest and logistic regression) and survival methods (fast survival SVM, Cox regression and random survival forest).

Results: A total of 3687 participants experienced cardiovascular mortality and 12,841 participants had IHD-related hospitalisation over a median follow-up of 10.4 years and 11.6 years respectively. The best model for cardiovascular mortality was a Cox survival regression with L1 penalty at a re-sampled case/non-case ratio of 0.3 achieved by under-sampling of the non-cases. This model had the Uno's and Harrel's concordance indexes of 0.898 and 0.900 respectively. The best model for IHD hospitalisation was a Cox survival regression with L1 penalty at a re-sampled case/non-case ratio of 1.0 with Uno's and Harrel's concordance indexes of 0.711 and 0.718 respectively.

Conclusion: Machine learning-based risk prediction models developed using self-reported questionnaire data had good prediction performance. These models may have the potential to be used in initial screening tests to identify high-risk individuals before undergoing costly investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijcard.2023.05.030DOI Listing

Publication Analysis

Top Keywords

machine learning
12
risk prediction
12
cardiovascular mortality
12
machine learning-based
8
learning-based risk
8
prediction models
8
self-reported questionnaire
8
best model
8
cox survival
8
survival regression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!