Role of the plant-specific calcium-binding C2-DOMAIN ABSCISIC ACID-RELATED (CAR) protein family in environmental signaling.

Eur J Cell Biol

Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany; Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany. Electronic address:

Published: June 2023

Many signaling processes rely on information decoding at the plasma membrane, and membrane-associated proteins and their complexes are fundamental for regulating this process. Still many questions exist as to how protein complexes are assembled and function at membrane sites to change identity and dynamics of membrane systems. Peripheral membrane proteins containing a calcium and phospholipid-binding C2-domain can act in membrane-related signaling by providing a tethering function so that protein complexes form. C2 domain proteins termed C2-DOMAIN ABSCISIC ACID-RELATED (CAR) proteins are plant-specific, and the functional relevance of this C2 domain protein subgroup is just emerging. The ten Arabidopsis CAR proteins CAR1 to CAR10 have a single C2 domain with a plant-specific insertion, the so-called "CAR-extra-signature" or also termed "sig domain". Via this "sig domain" CAR proteins can bind signaling protein complexes of different kinds and act in biotic and abiotic stress, blue light and iron nutrition. Interestingly, CAR proteins can oligomerize in membrane microdomains, and their presence in the nucleus can be linked with nuclear protein regulation. This shows that CAR proteins may play unprecedented roles in coordinating environmental responses and assembling required protein complexes to transmit information cues between plasma membrane and nucleus. The aim of this review is to summarize structure-function characteristics of the CAR protein family and assemble findings from CAR protein interactions and physiological functions. From this comparative investigation we extract common principles about the molecular operations that CAR proteins may fulfill in the cell. We also deduce functional properties of the CAR protein family based on its evolution and gene expression profiles. We highlight open questions and suggest novel avenues to prove and understand the functional networks and roles played by this protein family in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejcb.2023.151322DOI Listing

Publication Analysis

Top Keywords

car proteins
24
car protein
16
protein family
16
protein complexes
16
protein
11
car
10
proteins
9
c2-domain abscisic
8
abscisic acid-related
8
acid-related car
8

Similar Publications

T-cell redirecting therapy (TCRT), specifically chimeric antigen receptor T-cell therapy (CAR T-cells) and bispecific T-cell engagers (TCEs) represent a remarkable advance in the treatment of multiple myeloma (MM). There are several products available around the world and several more in development targeting primarily B-cell maturation antigen (BCMA) and G protein-coupled receptor class C group 5 member D (GRPC5D). The relatively rapid availability of multiple immunotherapies brings the necessity to understand how a certain agent may affect the safety and efficacy of a subsequent immunotherapy so MM physicians and patients can aim at optimal sequential use of these therapies.

View Article and Find Full Text PDF

Background: Anti-CD19 CAR T-cells have revolutionized outcomes in relapsed/refractory large B-cell lymphomas. Long-term follow-up underscored the role of hematological toxicity in non-relapse mortality, largely driven by infections, leading to the development of the CAR-HEMATOTOX (HT) score for predicting neutropenia. The European scientific community (EHA/EBMT) later reached a consensus, defining a new entity: immune effector cell-associated hematotoxicity (ICAHT).

View Article and Find Full Text PDF

Background: CAR T-cell therapy (CAR-T) is leading to durable responses in patients with cancer but there is concern that cytokine release syndrome (CRS) and neurotoxicity may impact survivors' cognitive function. We assessed long-term cognitive function in CAR-T recipients and examine factors associated with change in cognition over time.

Methods: We assessed perceived cognition (Functional Assessment of Cancer Therapy - Cognition) and neurocognitive performance (standardized neuropsychological battery) in adult patients prior to receiving CAR-T and at 6 month follow-up.

View Article and Find Full Text PDF

Chronic stress-induced cholesterol metabolism abnormalities promote ESCC tumorigenesis and predict neoadjuvant therapy response.

Proc Natl Acad Sci U S A

February 2025

Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.

Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.

View Article and Find Full Text PDF

Unlabelled: To overcome the paucity of known tumor-specific surface antigens in pediatric high-grade glioma (pHGG), we contrasted splicing patterns in pHGGs and normal brain samples. Among alternative splicing events affecting extracellular protein domains, the most pervasive alteration was the skipping of ≤30 nucleotide-long microexons. Several of these skipped microexons mapped to L1-IgCAM family members, such as .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!