Alpha-fetoprotein (AFP) is the best diagnostic marker for hepatocellular carcinoma (HCC) and plays an important role in the general surveillance of the population. Therefore, the establishment of an ultra-sensitive AFP assay is essential for the early screening and clinical diagnosis of HCC. In this work, we designed a signal-off biosensor for ultra-sensitive detection of AFP based on an electrochemiluminescent resonance energy transfer (ECL-RET) strategy using luminol intercalated layered bimetallic hydroxide (Luminol-LDH) as an ECL donor and Pt nanoparticles-grown on copper sulfide nanospheres (CuS@Pt) as ECL acceptor. The (Au NPs/Luminol-LDH) multilayer nanomembrane synthesized by our intercalation and layer-by-layer electrostatic assembly process not only effectively immobilizes luminol but also significantly enhances the ECL signal. The CuS@Pt composite has well visible light absorption ability and can burst the light emitted from luminol by ECL-RET. The biosensor showed good linearity in the range from 10 ng mL to 100 ng mL and a minimum detection limit of 2.6 fg mL. Therefore, the biosensor provides a novel and efficient strategy for the detection of AFP, which is important for the early screening and clinical diagnosis of HCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2023.124669 | DOI Listing |
J Mammary Gland Biol Neoplasia
January 2025
Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
AIDA Lab. College of Computer and Information Sciences (CCIS), Prince Sultan University, Riyadh, Saudi Arabia.
The development of deep learning algorithms has transformed medical image analysis, especially in brain tumor recognition. This research introduces a robust automatic microbrain tumor identification method utilizing the VGG16 deep learning model. Microscopy magnetic resonance imaging (MMRI) scans extract detailed features, providing multi-modal insights.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
Photothermal disinfection (PTD) offers promising potential for water purification due to its sustainable and broad-spectrum bactericidal properties, although it is hindered by slow charge separation in photosensitizers. Herein, we present a plasma-mediated PTD technique utilizing an efficient localized heating effect induced by incident light at specific wavelengths for rapid bacterial inactivation. A metallic CuS photosensitizer, derived from electronic waste through a biomimetic transmembrane confined-assembled strategy, facilitates collective and coherent oscillation of free electrons around Cu atoms in the near-infrared range.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China. Electronic address:
Z-classified topological phases lead to a larger-than-unity number of topological states. However, these multiple topological states are only localized at the corners in nonlocal systems. Here, first, we rigorously prove that the multiple topological states of nonlocal Su-Schrieffer-Heeger (SSH) chains can be inherited and realized by local aperiodic chains with only the nearest couplings.
View Article and Find Full Text PDFWater Res
January 2025
Laboratory of Biomass Bio-chemical Conversion, Guang Zhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China. Electronic address:
Propionate is a key intermediate in anaerobic digestion (AD) under low operational temperatures, which can destabilize the process. In this study, the supplementation of syntrophic cold-tolerant consortia and trace elements significantly improved the performance of psychrophilic (20 °C) reactor, increasing methane production to 91 % of mesophilic reactor levels and reducing propionate concentrations to less than 2 % of those in untreated psychrophilic reactors. Multi-omics analyses revealed that psychrophilic conditions downregulated the methylmalonyl-CoA and aceticlastic methanogenesis pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!