An integrated characterisation of incineration bottom ashes towards sustainable application: Physicochemical, ecotoxicological, and mechanical properties.

J Hazard Mater

CIEPQPF, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II-Pinhal de Marrocos, 3030-790 Coimbra, Portugal. Electronic address:

Published: August 2023

Environmental protection is a central concern regarding municipal solid waste incineration bottom ash (IBA) management, but the assessment of waste Hazardous Property HP14 (ecotoxicity) is still under debate. Civil engineering applications may be a suitable management strategy. This work aimed at evaluating IBA regarding mechanical behaviour and environmental hazardous potential, including a biotest battery for ecotoxicity assessment (comprising miniaturised tests), to explore its potential for safe utilization. Physical, chemical, ecotoxicological (Aliivibrio fischeri, Raphidocelis subcapitata, Lemna minor, Daphnia magna, Lepidium sativum), and mechanical (one-dimensional compressibility, shear strength) analyses were performed. The low leaching for potentially toxic metals and ions complied with European Union (EU) limit values for non-hazardous waste landfills. No relevant ecotoxicological effects were found. The biotest battery seems suitable for ecotoxicological assessment in the aquatic ecosystem, providing wide information on waste impact on different trophic/functional levels and chemical uptake routes, simultaneously involving short-duration tests and reduced amounts of waste. IBA presented more compressibility than sand, but its mixture with sand (30%:70%) was closer to sand compressibility. IBA (lower stresses) and the mixture (higher stresses) showed slightly higher shear strength than sand. Overall, IBA presented the potential for valorisation as loose aggregates from an environmental and mechanical viewpoint in a circular economy framework.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.131649DOI Listing

Publication Analysis

Top Keywords

incineration bottom
8
biotest battery
8
shear strength
8
iba presented
8
waste
5
iba
5
integrated characterisation
4
characterisation incineration
4
bottom ashes
4
ashes sustainable
4

Similar Publications

Secondary aluminum dross self-heating enhances hazardous waste vitrification.

Waste Manag

December 2024

School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China. Electronic address:

This study demonstrates the potential of secondary aluminum dross (SAD) to enhance the vitrifying hazardous waste incineration fly ash (FA) and bottom slag (BS). Based on the CaO-SiO-AlO ternary phase diagram, a liquid phase can be achieved at relatively low temperatures by carefully adjusting the AlO content, particularly when the CaO to SiO ratio is around 0.66.

View Article and Find Full Text PDF

Background: The deep inferior epigastric perforator (DIEP) flap provides an effective and popular means for autologous breast reconstruction. However, with the complexity of the pathway, the environmental impact of the pathway has yet to be evaluated.

Methods: A retrospective analysis of 42 unilateral DIEPs at a single reconstructive center was performed.

View Article and Find Full Text PDF

Effects of Multiple Factors on the Compressive Strength of Porous Ceramsite Prepared from Secondary Aluminum Dross.

Materials (Basel)

November 2024

State Key Laboratory of Environmental Benchmarks and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

Aluminum is one of the most in-demand nonferrous metals in the world. The secondary aluminum dross (SAD) produced during aluminum smelting is a type of solid waste that urgently requires disposal. SAD, municipal solid waste incineration fly ash, and bottom slag were used as raw materials to prepare porous ceramsite in a laboratory in this study.

View Article and Find Full Text PDF

Ion exchange (IX) can effectively remove per- and poly-fluoroalkyl substances (PFAS) from drinking water sources at ng/L to µg/L levels. However, adsorbed PFAS on spent resins should be further destructed for detoxification. Traditional resin incineration or landfilling may cause secondary pollution to the surrounding environment and cannot achieve resin reuse.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate measurement of metal concentrations in incineration ash is essential for assessing environmental risks and improving metal recovery methods.* -
  • Traditional digestion methods often fail to completely process solid waste ash, particularly due to issues created by using HF, which leads to new precipitates affecting metal detection.* -
  • A proposed two-step acid digestion method effectively fully digests various types of ash, utilizing microwave heating and a combination of different acids to improve accuracy in measuring heavy metals.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!