Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The assessment of soil quality improvement provided by biochars is complex and rarely examined. In this work, soil quality indices (SQIs) were produced to evaluate coffee industry feedstock biochars improvement on soil quality samples of a heavy metal-multicontaminated soil. Therefore, a 90-day incubation experiment was carried out with the following treatments: contaminated soil (CT), contaminated soil with pH raised to 7.0 (CaCO), contaminated soil + 5% (m/m) coffee ground biochar, and contaminated soil + 5% (m/m) coffee parchment biochar (PCM). After incubation, chemical and biological attributes were analyzed, and the data were subjected to principal component analysis and Pearson correlation to obtain a minimum dataset (MDS), which explain the majority of the variance of the data. The MDS-selected attributes were dehydrogenase and protease activity, exchangeable Ca content, phytoavailable content of Cu, and organic carbon, which composed the SQI. The resulting SQI ranged from 0.50 to 0.56, with the highest SQI obtained for the PCM treatment and the lowest for the CT. The phytoavailable content Cu was the determining factor for differentiating PCM from the other treatments, which was a biochar original attribute and helped to improve soil quality based on the SQI evaluation, further than heavy metal immobilization due to the soil sample pH increase. Longer-term experiments may illustrate clearer advantages of using biochar to improve heavy metal-contaminated soil quality, as physical attributes may also respond, and more significant contributions to biological attributes could be obtained as biochar ages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10653-023-01602-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!