Objective: The purpose of this study was to evaluate cholesterol esterification and HDL subclasses in plasma and cerebrospinal fluid (CSF) of Alzheimer's disease (AD) patients.

Methods: The study enrolled 70 AD patients and 74 cognitively normal controls comparable for age and sex. Lipoprotein profile, cholesterol esterification, and cholesterol efflux capacity (CEC) were evaluated in plasma and CSF.

Results: AD patients have normal plasma lipids but significantly reduced unesterified cholesterol and unesterified/total cholesterol ratio. Lecithin:cholesterol acyltransferase (LCAT) activity and cholesterol esterification rate (CER), two measures of the efficiency of the esterification process, were reduced by 29% and 16%, respectively, in the plasma of AD patients. Plasma HDL subclass distribution in AD patients was comparable to that of controls but the content of small discoidal preβ-HDL particles was significantly reduced. In agreement with the reduced preβ-HDL particles, cholesterol efflux capacity mediated by the transporters ABCA1 and ABCG1 was reduced in AD patients' plasma. The CSF unesterified to total cholesterol ratio was increased in AD patients, and CSF CER and CEC from astrocytes were significantly reduced in AD patients. In the AD group, a significant positive correlation was observed between plasma unesterified cholesterol and unesterified/total cholesterol ratio with Aβ CSF content.

Conclusion: Taken together our data indicate that cholesterol esterification is hampered in plasma and CSF of AD patients and that plasma cholesterol esterification biomarkers (unesterified cholesterol and unesterified/total cholesterol ratio) are significantly associated to disease biomarkers (i.e., CSF Aβ).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199596PMC
http://dx.doi.org/10.1186/s13195-023-01241-6DOI Listing

Publication Analysis

Top Keywords

cholesterol esterification
24
cholesterol ratio
16
cholesterol
15
unesterified cholesterol
12
cholesterol unesterified/total
12
unesterified/total cholesterol
12
plasma
10
plasma cerebrospinal
8
cerebrospinal fluid
8
esterification hampered
8

Similar Publications

Biomimetic calcium-chelation nanoparticles reprogram tumor metabolism to enhance antitumor immunity.

J Control Release

January 2025

NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China. Electronic address:

Metabolic reprogramming within the tumor microenvironment poses a significant obstacle to the therapeutic efficacy of antitumor immunity. Here, inspired by the diverse programme of cholesterol metabolism between tumor and immune cells, a biocompatible carboxy-modified cyclodextrin carrier equipped with a biomimetic surface was developed to encapsulate FX11 and Avasimibe (RM-CDC@FX11&Ava) for synergistic antitumor metabolic therapy and immunotherapy. Through the manipulation of calcium levels using poly-carboxylic compounds to initiate cholesterol biosynthesis, RM-CDC@FX11&Ava dynamically regulates glycolysis and blocks cholesterol esterification to navigate metabolic reprogramming.

View Article and Find Full Text PDF

Fatty Acid Esterification of Octacosanol Attenuates Triglyceride and Cholesterol Synthesis in Mice.

J Agric Food Chem

January 2025

Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok 65000, Thailand.

This study aimed to evaluate the cholesterol-regulatory effects of lauric-acid-esterified octacosanol (LEO) and oleic-acid-esterified octacosanol (OEO) compared to their unmodified counterparts and to investigate the underlying mechanisms by partially substituting the fat content in obese C57BL/6J mice induced with a high-fat diet (HFD). Rice bran oil and coconut oil were also investigated as they are rich in oleic acid and lauric acid, respectively. The results showed that all supplemented groups significantly inhibited weight gain induced by the HFD, but the groups treated with esterified octacosanol exhibited a more pronounced effect.

View Article and Find Full Text PDF

The purpose of this study was to investigate the usefulness of the activity of lecithin:cholesterol acyltransferase (LCAT), the enzyme responsible for esterification of cholesterol in plasma, as a predictor of retained placenta (RP) in close-up cows, compared with the non-esterified fatty acids (NEFA) concentration. This study was conducted as a case-control study between February 2010 and February 2016, on a single farm with approximately 200 Holstein parous cows in Hokkaido, Japan. Of the 1187 dairy cattle that calved, 835 dairy cattle were enrolled that underwent routine regular health examinations including blood sampling, body condition score (BCS) and the rumen fill score (RFS) at the close-up stage between 2 and 21 days before their expected calving dates.

View Article and Find Full Text PDF

Saponins are compounds composed of lipophilic aglycones linked to hydrophilic sugars. Natural saponins are isolated from plants and some Marine organisms. As important cholesterol-lowering drugs, natural saponins have attracted wide attention for their therapeutic potential in a variety of cholesterol-related metabolic diseases.

View Article and Find Full Text PDF

As an advanced nucleic acid therapeutical modality, mRNA can express any type of protein in principle and thus holds great potential to prevent and treat various diseases. Despite the success in COVID-19 mRNA vaccines, direct local delivery of mRNA into the lung by inhalation would greatly reinforce the treatment of pulmonary pathogens and diseases. Herein, we developed lipid nanoparticles (LNPs) from degradable ionizable glycerolipids for potent pulmonary mRNA delivery via nebulization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!