Background: The murine CBA/J mouse model widely supports immunology and enteric pathogen research. This model has illuminated Salmonella interactions with the gut microbiome since pathogen proliferation does not require disruptive pretreatment of the native microbiota, nor does it become systemic, thereby representing an analog to gastroenteritis disease progression in humans. Despite the value to broad research communities, microbiota in CBA/J mice are not represented in current murine microbiome genome catalogs.

Results: Here we present the first microbial and viral genomic catalog of the CBA/J murine gut microbiome. Using fecal microbial communities from untreated and Salmonella-infected, highly inflamed mice, we performed genomic reconstruction to determine the impacts on gut microbiome membership and functional potential. From high depth whole community sequencing (~ 42.4 Gbps/sample), we reconstructed 2281 bacterial and 4516 viral draft genomes. Salmonella challenge significantly altered gut membership in CBA/J mice, revealing 30 genera and 98 species that were conditionally rare and unsampled in non-inflamed mice. Additionally, inflamed communities were depleted in microbial genes that modulate host anti-inflammatory pathways and enriched in genes for respiratory energy generation. Our findings suggest decreases in butyrate concentrations during Salmonella infection corresponded to reductions in the relative abundance in members of the Alistipes. Strain-level comparison of CBA/J microbial genomes to prominent murine gut microbiome databases identified newly sampled lineages in this resource, while comparisons to human gut microbiomes extended the host relevance of dominant CBA/J inflammation-resistant strains.

Conclusions: This CBA/J microbiome database provides the first genomic sampling of relevant, uncultivated microorganisms within the gut from this widely used laboratory model. Using this resource, we curated a functional, strain-resolved view on how Salmonella remodels intact murine gut communities, advancing pathobiome understanding beyond inferences from prior amplicon-based approaches. Salmonella-induced inflammation suppressed Alistipes and other dominant members, while rarer commensals like Lactobacillus and Enterococcus endure. The rare and novel species sampled across this inflammation gradient advance the utility of this microbiome resource to benefit the broad research needs of the CBA/J scientific community, and those using murine models for understanding the impact of inflammation on the gut microbiome more generally. Video Abstract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199544PMC
http://dx.doi.org/10.1186/s40168-023-01529-7DOI Listing

Publication Analysis

Top Keywords

gut microbiome
24
murine gut
12
gut
10
microbiome
9
cba/j
8
cba/j mice
8
murine
7
exposing taxonomic
4
taxonomic variation
4
inflammation
4

Similar Publications

Comparative Analysis of the Probiotic Features of Lysinibacillus and Enterobacter Strains Isolated from Gut Tract of Triploid Cyprinid Fish.

Curr Microbiol

January 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.

Gut mucosal immunity of teleost is mainly governed by mucosa-associated lymphoid tissues (MALT) and indigenous microbiota on mucosal surfaces of gut tract, which can confer protection against pathogenic invasion. However, the probiotic features of bacterial isolates from gut tract of triploid cyprinid fish (TCF) were largely unclear. In this study, Lysinibacillus and Enterobacter strains were isolated for probiotic identification.

View Article and Find Full Text PDF

The widespread use of antibiotics has led to the emergence of multidrug-resistant bacteria, which pose significant threats to animal health and food safety. Host defense peptides (HDPs) have emerged as promising alternatives because of their unique antimicrobial properties and minimal resistance induction. However, the high costs associated with HDP production and incorporation into animal management practices hinder their widespread application.

View Article and Find Full Text PDF

Acetaminophen induced acute liver injury (ALI) has a high incidence and is a serious medical problem, but there is a lack of effective treatment. The enterohepatic axis is one of the targets of recent attention due to its important role in liver diseases. Disulfiram (DSF) is a multitarget drug that has been proven to play a role in a variety of liver diseases and can affect intestinal flora, but whether it can alleviate ALI is not clear.

View Article and Find Full Text PDF

The gut microbiota is unanimously acknowledged as playing a central role in human health, notably through the production of various metabolites, including short-chain fatty acids, secondary bile acids, vitamins or neurotransmitters. Beyond contributing to gut health itself, these microbial metabolites significantly impact multiple organ systems by participating in key signaling pathways along the well documented gut-organ axes. Chemicals ingested through food might interact with our gut microbiota, altering metabolites production with consequences on health.

View Article and Find Full Text PDF

The gut microbiome plays a key role in human health, influencing various biological processes and disease outcomes. The historical roots of probiotics are traced back to Nobel Laureate Élie Metchnikoff, who linked the longevity of Bulgarian villagers to their consumption of sour milk fermented by Lactobacilli. His pioneering work led to the global recognition of probiotics as beneficial supplements, now a multibillion-dollar industry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!