Conjugated cross-linked phosphine as broadband light or sunlight-driven photocatalyst for large-scale atom transfer radical polymerization.

Nat Commun

School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China.

Published: May 2023

AI Article Synopsis

  • Researchers developed a new phosphine-based polymer (PPh-CHCP) that can photocatalyze atom transfer radical polymerization (ATRP) efficiently under sunlight or broad-spectrum light.
  • This system allows for nearly complete conversion of monomers like acrylates using a wide range of light wavelengths, demonstrating effectiveness even in less-than-ideal weather conditions.
  • The photocatalyst is recyclable and can produce large quantities of both homopolymers and block copolymers, making it a promising solution for large-scale industrial applications.

Article Abstract

The use of light to regulate photocatalyzed reversible deactivation radical polymerization (RDRP) under mild conditions, especially driven by broadband light or sunlight directly, is highly desired. But the development of a suitable photocatalyzed polymerization system for large-scale production of polymers, especially block copolymers, has remained a big challenge. Herein, we report the development of a phosphine-based conjugated hypercrosslinked polymer (PPh-CHCP) photocatalyst for an efficient large-scale photoinduced copper-catalyzed atom transfer radical polymerization (Cu-ATRP). Monomers including acrylates and methyl acrylates can achieve near-quantitative conversions under a wide range (450-940 nm) of radiations or sunlight directly. The photocatalyst could be easily recycled and reused. The sunlight-driven Cu-ATRP allowed the synthesis of homopolymers at 200 mL from various monomers, and monomer conversions approached 99% in clouds intermittency with good control over polydispersity. In addition, block copolymers at 400 mL scale can also be obtained, which demonstrates its great potential for industrial applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199896PMC
http://dx.doi.org/10.1038/s41467-023-38402-yDOI Listing

Publication Analysis

Top Keywords

radical polymerization
12
broadband light
8
atom transfer
8
transfer radical
8
sunlight directly
8
block copolymers
8
conjugated cross-linked
4
cross-linked phosphine
4
phosphine broadband
4
light sunlight-driven
4

Similar Publications

Myofibroblastoma is a rare mesenchymal tumour known for its benign nature but complex diagnostic pathway. A woman in her 40s presented with a painless breast mass, initially reported as a fibroadenoma on ultrasound mammography and as a benign to borderline phyllodes tumour on fine needle aspiration cytology. Contrast-enhanced CT was reported as carcinoma of the breast with Breast Imaging and Reporting Data System (BIRADS)-6.

View Article and Find Full Text PDF

For the effective removal of phenol from the environment, photocatalytic synergistic adsorption is currently one of the key methods. By leveraging the polysaccharide backbone structure of sodium alginate (SA),Zinc hydroxystannate (ZHS) was introduced into the gel structure using a co-precipitation technique. Additionally, gangue waste was repurposed through a polymerization reaction.

View Article and Find Full Text PDF

Background/objectives: Glioblastoma is the most common and lethal primary brain tumor. Patients often suffer from tumor- and treatment induced vasogenic edema, with devastating neurological consequences. Intracranial edema is effectively treated with dexamethasone.

View Article and Find Full Text PDF

With 3D printing technology, fiber-reinforced polymer composites can be printed with radical shapes and properties, resulting in varied mechanical performances. Their high strength, light weight, and corrosion resistance are already advantages that make them viable for physical civil infrastructure. It is important to understand these composites' behavior when used in concrete, as their association can impact debonding failures and overall structural performance.

View Article and Find Full Text PDF

Amidst the pervasive threat of bacterial afflictions, the imperative for advanced antibiofilm surfaces with robust antimicrobial efficacy looms large. This study unveils a sophisticated ultrasonic synthesis method for cellulose nanocrystals (CNCs, 10-20 nm in diameter and 300-900 nm in length) and their subsequent application as coatings on flexible substrates, namely cotton (CC-1) and membrane (CM-1). The cellulose nanocrystals showed excellent water repellency with a water contact angle as high as 148° on the membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!