This study aims to extract the starch from seeds of the Thai aromatic fruit (Artocarpus species), champedak (Artocarpus integer) and jackfruit (Artocarpus heterophyllus L.) and evaluate its potential use as a raw material to develop compact powder as substitute for talcum in powder formulations. The chemical and physical characteristics as well as the physicochemical properties of the starch were also determined. Moreover, compact powder formulations using the extracted starch as an ingredient were developed and investigated. This study found that champedak (CS) and jackfruit starch (JS) provided a maximum average granule size of 10 μm. The bell or semi-oval shape and smooth surface of the starch granules was perfectly suited to compact powder development under the cosmetic powder pressing machine, which could reduce the opportunity of fracture during the process. CS and JS presented low swelling power and solubility but high water and oil absorption capacities, which could potentially increase the absorbency of the compact powder. Finally, the developed compact powder formulations provided a smooth surface with a homogeneous and intense colour. All formulations presented a highly adhesive property and were resistant to transport and normal handling by users.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.124940 | DOI Listing |
Materials (Basel)
January 2025
Department of Construction Engineering, University of Córdoba, E.P.S of Belmez, Avenida de la Universidad s/n, E-14240 Córdoba, Spain.
The findings highlight the potential for broadening the use of shell aggregates in construction applications. This research investigated the viability of incorporating milled seashells as fine sand replacements for natural calcareous sand in the production of self-compacting mortar. These results highlight a promising avenue for coastal industries to reduce waste while enhancing the durability of construction materials.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Faculty of Engineering, University of Kragujevac, SestreJanjić 6, 34000 Kragujevac, Serbia.
Magnesium-based materials, which are known for their light weight and exceptional strength-to-weight ratio, hold immense promise in the biomedical, automotive, aerospace, and military sectors. However, their inherent limitations, including low wear resistance and poor mechanical properties, have driven the development of magnesium-based metal matrix composites (Mg-MMCs). The pivotal role of powder metallurgy (PM) in fabricating Mg-MMCs was explored, enhancing their mechanical and corrosion resistance characteristics.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
The rapid expansion of the cosmetics industry has significantly increased the adoption of alternative microplastics in response to increasingly stringent global environmental regulations. This study presents a comparative analysis of the treatment performance of silica powder and cornstarch-common alternatives for microplastics in cosmetics-using ceramic membrane filtration combined with flow imaging microscopy (FlowCam) to analyze particle behavior. Bench-scale crossflow filtration experiments were performed with commercially available alumina ceramic membranes.
View Article and Find Full Text PDFLangmuir
January 2025
Chemistry and Structure of novel Materials, University of Siegen, Paul-Bonatz Strasse 9-11, 57068 Siegen, Germany.
The surface charge of metal oxides is an important property that significantly contributes to a wide range of phenomena, including adsorption, catalysis, and material science. The surface charge can be predicted by determining the isoelectric point (IEP) of a material and the pH of a solution. Although there have been several studies of the IEP of metal oxide (nano)particles, only a few have reported the IEP of metal oxide films.
View Article and Find Full Text PDFInt J Pharm
January 2025
Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:
A recently derived tabletability equation mathematically describes tablet tensile strength as a function of compaction pressure. In this work, further analysis of the tabletability equation reveals that the normalized slope at the inflection point correlates well with powder plasticity, indicating its potential use as a powder plasticity parameter. Additionally, we explore applications of the tabletability equation in quantifying errors caused by a tensile strength measurement method that disregards out-of-die elastic recovery for assessing tabletability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!