Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To address the global phosphorus crisis and solve the problem of eutrophication in water bodies, the recovery of phosphate from wastewater for use as a slow-release fertilizer and to improve the slow-release performance of fertilizers is considered an effective way. In this study, amine-modified lignin (AL) was prepared from industrial alkali lignin (L) for phosphate recovery from water bodies, and then the recovered phosphorus-rich aminated lignin (AL-P) was used as a slow-release N and P fertilizer. Batch adsorption experiments showed that the adsorption process was consistent with the Pseudo-second-order kinetics and Langmuir model. In addition, ion competition and actual aqueous adsorption experiments showed that AL had good adsorption selectivity and removal capacity. The adsorption mechanism included electrostatic adsorption, ionic ligand exchange and cross-linked addition reaction. In the aqueous release experiments, the rate of nitrogen release was constant and the release of phosphorus followed a Fickian diffusion mechanism. Soil column leaching experiments showed that the release of N and P from AL-P in soil followed the Fickian diffusion mechanism. Therefore, AL recovery of aqueous phosphate for use as a binary slow-release fertilizer has great potential to improve the environment of water bodies, enhance nutrient utilization and address the global phosphorus crisis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.124862 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!