The propagation of antibiotic resistance genes (ARGs) restricts the application of antibiotic fermentation residues (AFRs). This study investigated medium chain fatty acids (MCFA) production from AFRs, focusing on the effect of ionizing radiation pretreatment on the fates of ARGs. The results indicated that ionizing radiation pretreatment not only stimulated the MCFA production, but also inhibited the proliferation of ARGs. Radiation at 10-50 kGy decreased ARGs abundances by 0.6-21.1% at the end of fermentation process. Mobile genetic elements (MGEs) exhibited higher resistance to ionizing radiation, radiation over 30 kGy was required to suppress the proliferation of MGEs. Radiation at 50 kGy achieved an adequate inhibition to MGEs, and the degradation efficiency was 17.8-74.5% for different kinds of MGEs. This work suggested that ionizing radiation pretreatment could be a good option to ensure the safer application of AFRs by eliminating the ARGs and preventing the horizontal gene transfer of ARGs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2023.129180 | DOI Listing |
Environ Sci Technol
January 2025
Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
Aged plastics possess diverse interactive properties with metals compared to pristine ones. However, the role of aging for nanoplastics (NPs) in being a carrier of mercury (Hg), a common marine environmental pollutant, and their combined effects remain unclear. This study investigated the carrier effect of ultraviolet-aged NPs on Hg and the ensuing toxicity in a marine copepod under a multigenerational scenario.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Environmental Protection Research Institute, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China.
The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.
View Article and Find Full Text PDFJ Soc Cardiovasc Angiogr Interv
December 2024
Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
Background: Advancements in cardiac catheterization have improved survival for pediatric congenital heart disease patients, but the associated ionizing radiation risks necessitate ethical consideration.
Methods: This study presents an empirical model, developed from 3131 unique pediatric procedures, to establish alert levels based on a patient's lateral thickness of the thorax for various procedural categories during diagnostic or interventional cardiac catheterization. The model uses linear regression of logarithmic reference air kinetic energy released per unit mass (KERMA) and air KERMA area product, also referred to as dose area product, to set alert levels at the top 95% and 99% of patient data.
J Environ Manage
January 2025
School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China. Electronic address:
Ofloxacin (OFX), commonly employed in the treatment of infectious diseases, is frequently detected in aquatic environments and poses potential ecological risks. UV/HO oxidation has been recognized as an efficient approach for removing antibiotics. In this study, Cu-doped waste-tire carbon was prepared and used as a UV/HO catalyst for the degradation of OFX.
View Article and Find Full Text PDFWater Environ Res
January 2025
Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, P. R. China.
The tolerance and degradation characteristics of a marine oil-degrading strain Acinetobacter sp. Y9 were investigated in the presence of diesel oil and simulated radioactive nuclides (Mn, Co, Ni, Sr, Cs) at varying concentrations, as well as exposure to γ-ray radiation (Co-60). The maximum tolerable concentrations for Coand Ni were found to be 5 mg/l and 25 mg/l, respectively, while the tolerable concentrations for Mn, Sr, and Cs exceeded 400 mg/l, 1000 mg/l, and 1000 mg/l, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!