Tong Sai granule improves AECOPD via regulation of MAPK-SIRT1-NF-κB pathway and cellular senescence alleviation.

J Ethnopharmacol

Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of PR China, Zhengzhou, Henan, 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China. Electronic address:

Published: October 2023

Ethnopharmacological Relevance: Tong Sai granule (TSG) a traditional Chinese medicine, are used to treat acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Cellular senescence is considered the mechanism underlying AECOPD progression.

Aim Of The Study: This study aimed to investigate the therapeutic mechanisms of TSG in an AECOPD rat model (established using cigarette smoke exposure and bacterial infection) and focused on the inhibition of cellular senescence in vivo and in vitro.

Materials And Methods: Histological changes and levels of inflammatory cytokines, matrix metalloproteinases (MMPs), p53, and p21 were determined. A cellular senescence model was established by challenging airway epithelial cells with cigarette smoke extract (CSE) and lipopolysaccharide (LPS). Quantitative PCR, western blotting, and immunofluorescence were used to measure mRNA and protein levels. Additionally, UPLC-Q-Extractive-Orbitrap MS analysis, network analysis, and transcriptomics were used to analyze the potential compounds and molecular mechanisms of TSG.

Results: The results showed that oral administration of TSG significantly reduced the severity of AECOPD in rats by ameliorating lung function decline and pathological injuries and increasing the levels of C-reactive protein and serum amyloid A, two well-known proinflammatory mediators of the acute phase response. Oral TSG administration also decreased the expression levels of proinflammatory cytokines (e.g., IL-6, IL-1β, and TNF-α), MMPs (e.g., MMP-2 and MMP-9), critical regulators of senescence such as p21 and p53, and the apoptotic marker γH2AX, all of which are factors in cellular senescence in lung tissue. TSG4 was isolated from TSGs using macroporous resin and found to significantly suppress cellular senescence in CSE/LPS-induced bronchial epithelial cells. Furthermore, 26 of 56 compounds identified in TSG4 were used to predict 882 potential targets. Additionally, 317 differentially expressed genes (DEGs) were detected in CSE/LPS-treated bronchial epithelial cells. Network analysis of the 882 targets and 317 DEGs revealed that TSG4 regulated multiple pathways, among which the mitogen-activated protein kinase-sirtuin 1-nuclear factor kappa B (MAPK-SIRT1-NF-κB) pathway is important in terms of antisenescent mechanisms. Moreover, in CSE/LPS-induced bronchial epithelial cells, p-p38, p-ERK1/2, p-JNK, and p-p65 levels were increased and SIRT1 levels were decreased after TSG4 treatment. Additionally, oral TSG administration decreased p-p38 and p-p65 levels and increased SIRT1 levels in the lung tissues of AECOPD model rats.

Conclusion: Collectively, these results indicate that TSGs ameliorate AECOPD by regulating the MAPK-SIRT1-NF-κB signaling pathway and subsequently suppressing cellular senescence.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2023.116622DOI Listing

Publication Analysis

Top Keywords

cellular senescence
28
epithelial cells
16
bronchial epithelial
12
tong sai
8
sai granule
8
mapk-sirt1-nf-κb pathway
8
senescence
8
model established
8
cigarette smoke
8
levels
8

Similar Publications

Human Hair Follicle Mesenchymal Stem Cell-Derived Exosomes Attenuate UVB-Induced Photoaging via the miR-125b-5p/TGF-β1/Smad Axis.

Biomater Res

January 2025

Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.

Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.

View Article and Find Full Text PDF

Insights into age-related osteoporosis from senescence-based preclinical models and human accelerated aging paradigms.

Mech Ageing Dev

January 2025

Department of Medicine, Divisions of Geriatric Medicine and Gerontology, the Department of Physiology and Biomedical Engineering, and the Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota. Electronic address:

Preclinical models of age-related osteoporosis have been developed based on the accumulation and clearance of senescent cells. The former include animal models based on telomere dysfunction and focal radiation; the latter based on genetic and pharmacological targeting (i.e.

View Article and Find Full Text PDF

Injectable DAT-ALG Hydrogel Mitigates Senescence of Loaded DPMSCs and Boosts Healing of Perianal Fistulas in Crohn's Disease.

ACS Biomater Sci Eng

January 2025

Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.

Perianal fistulas (PAFs) are a severe complication of Crohn's disease that significantly impact patient prognosis and quality of life. While stem-cell-based strategies have been widely applied for PAF treatment, their efficacy remains limited. Our study introduces an injectable, temperature-controlled decellularized adipose tissue-alginate hydrogel loaded with dental pulp mesenchymal stem cells (DPMSCs) for in vivo fistula treatment.

View Article and Find Full Text PDF

Senescence is a non-proliferative, survival state that cancer cells can enter to escape therapy. In addition to soluble factors, senescence cells secrete extracellular vesicles (EVs), which are important mediators of intercellular communication. To explore the role of senescent cell-derived EVs (senEVs) in inflammatory responses to senescence, we developed an engraftment-based senescence model in wild-type mice and genetically blocked senEV release in vivo, without significantly affecting soluble mediators.

View Article and Find Full Text PDF

Nucleus pulposus cell (NPC) senescence contributes to intervertebral disc degeneration (IVDD). However, the underlying molecular mechanisms are not fully understood. In this study, it is demonstrated that angiotensin-converting enzyme 2 (ACE2) counteracted the aging of NPCs and IVDD at the cellular and physiological levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!