Air pollution is a major contributor to the global burden of disease and has been linked to several diseases and conditions, including cardiovascular disease. The biological mechanisms are related to inflammation and increased coagulability, factors that play an important role in the pathogenesis of venous thromboembolism (VTE, i.e., deep vein thrombosis or pulmonary embolism). This study investigates if long-term exposure to air pollution is associated with increased VTE incidence. The study followed 29 408 participants from the Malmö Diet and Cancer (MDC) cohort, which consists of adults aged 44-74 recruited in Malmö, Sweden between 1991 and 1996. For each participant, annual mean residential exposures to particulate matter <2.5 μg (PM) and <10 μg (PM), nitrogen oxides (NO) and black carbon (BC) from 1990 up to 2016 were calculated. Associations with VTE were analysed using Cox proportional hazard models for air pollution in the year of the VTE event (lag0) and the mean of the prior 1-10 years (lag1-10). Annual air pollution exposures for the full follow-up period had the following means: 10.8 μg/m for PM, 15.8 μg/m for PM, 27.7 μg/m for NO, and 0.96 μg/m for BC. The mean follow-up period was 19.5 years, with 1418 incident VTE events recorded during this period. Exposure to lag1-10 PM was associated with an increased risk of VTE (HR 1.17 (95%CI 1.01-1.37)) per interquartile range (IQR) of 1.2 μg/m increase in PM exposure. No significant associations were found between other pollutants or lag0 PM and incident VTE. When VTE was divided into specific diagnoses, associations with lag1-10 PM exposure were similarly positive for deep vein thrombosis but not for pulmonary embolism. Results persisted in sensitivity analyses and in multi-pollutant models. Long-term exposure to moderate concentrations of ambient PM was associated with increased risks of VTE in the general population in Sweden.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2023.121841 | DOI Listing |
Genet Epidemiol
January 2025
Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA.
Gene-environment interactions have been observed for childhood asthma, however few have been assessed in ethnically diverse populations. Thus, we examined how polygenic risk score (PRS) modifies the association between ambient air pollution exposure (nitrogen dioxide [NO], ozone, particulate matter < 2.5 and < 10 μm) and childhood asthma incidence in a diverse cohort.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel.
Air-pollution monitoring is sparse across most of the United States, so geostatistical models are important for reconstructing concentrations of fine particulate air pollution (PM) for use in health studies. We present XGBoost-IDW Synthesis (XIS), a daily high-resolution PM machine-learning model covering the contiguous US from 2003 through 2023. XIS uses aerosol optical depth from satellites and a parsimonious set of additional predictors to make predictions at arbitrary points, capturing near-roadway gradients and allowing the estimation of address-level exposures.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Epidemiology, NUTRIM School for Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands. Electronic address:
Prenatal exposure to air pollution has been linked to lower birth weight, yet the role of the placenta in this association is often overlooked. This study investigates whether placental characteristics act as moderators or mediators in the association between prenatal exposure to particulate matter (PM) and nitrogen dioxide (NO) and birth weight in twins. The study included 3340 twins (born 2002-2013) from the East Flanders Prospective Twin Survey.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA. Electronic address:
PNPLA3-I148M genotype is the strongest predictive single-nucleotide polymorphism for liver fat. We examine whether PNPLA3-I148M modifies associations between oxidative gaseous air pollutant exposure (O) with i) liver fat and ii) multi-omics profiles of miRNAs and metabolites linked to liver fat. Participants were 69 young adults (17-22 years) from the Meta-AIR cohort.
View Article and Find Full Text PDFEnviron Pollut
January 2025
School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, 750004, China; The Peking University First Hospital Ningxia Women and Children's Hospital, Yinchuan, Ningxia, 751000, China. Electronic address:
Macrosomia poses significant health risks to mother and fetuses, yet the protective sensitive window for the effects of green space resources on the risk of macrosomia remains unexplored. This study identified sensitive windows of green space exposure and examined the interactions with air pollutants. In a study of 221,380 full-term newborns delivered at the Hospital, from 2017 to 2021, Normalized Difference Vegetation Index (NDVI) and atmospheric pollutant concentrations were matched to participants based on their residences in the Ningxia region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!