Oxidation treatment of algae-laden water may cause cells rupture and emission of intracellular organics, thus restricting its further popularization. As a moderate oxidant, calcium sulfite could be slowly released in the liquid phase, thus exhibiting a potential to maintain the cells integrity. To this end, calcium sulfite oxidation activated by ferrous iron was proposed integrated with ultrafiltration (UF) for removal of Microcystis aeruginosa, Chlorella vulgaris and Scenedesmus quadricauda. The organic pollutants were significantly eliminated, and the repulsion between algal cells was obviously weakened. Through fluorescent components extraction and molecular weights distribution analyses, the degradation of fluorescent substances and the generation of micromolecular organics were verified. Moreover, the algal cells were dramatically agglomerated and formed larger flocs under the premise of maintaining high cell integrity. The terminal normalized flux was ascended from 0.048-0.072 to 0.711-0.956, and the fouling resistances were extraordinarily decreased. Due to the distinctive spiny structure and minimal electrostatic repulsion, Scenedesmus quadricauda was easier to form flocs, and its fouling was more readily mitigated. The fouling mechanism was remarkably altered through postponing the formation of cake filtration. The membrane interface characteristics including microstructures and functional groups firmly proved the fouling control efficiency. The reactive oxygen species (i.e., SO and O) generated through the principal reactions and Fe-Ca composite flocs played dominant roles in alleviating membrane fouling. Overall, the proposed pretreatment exhibits a brilliant application potential for enhancing UF in algal removal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.138956 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!