Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The reduction of Fe(III) coupled with the oxidation of organic matter, primarily stimulated by dissimilatory iron-reducing bacteria (DIRB) under anoxic conditions, is a critical biogeochemical process in lacustrine sediments. Many single strains have been recovered and investigated, however, the changes in the diversity of culturable DIRB communities with sedimentary depth have not been fully revealed. In this study, 41 DIRB strains affiliated to ten genera of phylum Firmicutes, Actinobacteria, and Proteobacteria were isolated from the sediments of Taihu Lake at three depths (0-2 cm, 9-12 cm, and 40-42 cm), referring to distinct nutrient conditions. Fermentative metabolisms were identified in nine genera (except genus Stenotrophomonas). The DIRB community diversity and the microbial iron reduction (MIR) patterns vary in vertical profiles. The community abundance varied with the TOC contents in vertical profiles. The DIRB communities, containing 17 strains of 8 genera, were most diverse in the surface sediments (0-2 cm), where organic matter was most abundant among the three depths. 11 DIRB strains of five genera were identified in the 9-12 cm sediments with the lowest content of organic matter, while 13 strains of seven genera were identified in deep sediments (40-42 cm). Among the isolated strains, phylum Firmicutes dominated the DIRB communities at three depths, while its relative abundance increased with depth. Fe ion was recognized as the dominant microbial ferrihydrite-reducing product of DIRB from 0 to 12 cm sediments. Instead, lepidocrocite and magnetite were the main MIR products of DIRB retrieved from 40 to 42 cm. The results indicate that the MIR driven by fermentative DIRB is crucial in lacustrine sediments and that the distribution of nutrients and iron (minerals) likely influences the diversity of DIRB communities in the lacustrine sediments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.164332 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!