Overwhelmed by the man in the moon? Pareidolic objects provoke increased amygdala activation in autism.

Cortex

Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden; Section of Speech and Language Pathology, Institute of Neuroscience and Physiology, University of Gothenburg, Sweden.

Published: July 2023

An interesting feature of the primate face detection system results in the perception of illusory faces in objects, or pareidolia. These illusory faces do not per se contain social information, such as eye-gaze or specific identities, yet they activate the cortical brain face-processing network, possibly via the subcortical route, including the amygdala. In autism spectrum disorder (ASD), aversion to eye-contact is commonly reported, and so are alterations in face processing more generally, yet the underlying reasons are not clear. Here we show that in autistic participants (N=37), but not in non-autistic controls (N=34), pareidolic objects increase amygdala activation bilaterally (right amygdala peak: X = 26, Y = -6, Z = -16; left amygdala peak X = -24, Y = -6, Z = -20). In addition, illusory faces engage the face-processing cortical network significantly more in ASD than in controls. An early imbalance in the excitatory and inhibitory systems in autism, affecting typical brain maturation, may be at the basis of an overresponsive reaction to face configuration and to eye contact. Our data add to the evidence of an oversensitive subcortical face processing system in ASD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cortex.2023.03.014DOI Listing

Publication Analysis

Top Keywords

illusory faces
12
pareidolic objects
8
amygdala activation
8
face processing
8
amygdala peak
8
amygdala
5
overwhelmed man
4
man moon?
4
moon? pareidolic
4
objects provoke
4

Similar Publications

Introduction: Global Visual Selective Attention (VSA) is the ability to integrate multiple visual elements of a scene to achieve visual overview. This is essential for navigating crowded environments and recognizing objects or faces. Clinical pediatric research on global VSA deficits primarily focuses on autism spectrum disorder (ASD).

View Article and Find Full Text PDF

Face pareidolia minimally engages macaque face selective neurons.

Prog Neurobiol

January 2025

Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health; Bethesda, MD, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute; Bethesda, MD, USA. Electronic address:

The macaque cerebral cortex contains concentrations of neurons that prefer faces over inanimate objects. Although these so-called face patches are thought to be specialized for the analysis of facial signals, their exact tuning properties remain unclear. For example, what happens when an object by chance resembles a face? Everyday objects can sometimes, through the accidental positioning of their internal components, appear as faces.

View Article and Find Full Text PDF

The current study sought to examine factors that affect vection (the illusory experience of self-motion in the absence of real motion), visually-induced motion sickness, and one's sense of presence in a passive virtual reality driving simulation by exposing participants to 60-s pre-recorded driving laps and recording their self-reported metrics as well as their head motion patterns during the laps. Faster virtual driving speed (average 120 mph vs. 60 mph) resulted in significantly higher ratings of vection and motion sickness.

View Article and Find Full Text PDF

Pareidolic faces-illusory faces in objects-offer a unique context for studying biases in the development of facial processing because they are visually diverse (e.g., color, shape) while lacking key elements of real faces (e.

View Article and Find Full Text PDF

Humans perceive illusory faces in everyday objects with a face-like configuration, an illusion known as face pareidolia. Face-selective regions in humans and monkeys, believed to underlie face perception, have been shown to respond to face pareidolia images. Here, we investigated whether pareidolia selectivity in macaque inferotemporal cortex is explained by the face-like configuration that drives the human perception of illusory faces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!