Background And Objectives: Physiological loading-induced mechanical environments regulate bone modeling and remodeling. Thus, loading-induced normal strain is typically considered a stimulus to osteogenesis. However, several studies noticed new bone formation near the sites of minimal normal strain, e.g., the neutral axis of bending in long bones, which raises a question on how bone mass is maintained near these sites. Secondary mechanical components such as shear strain and interstitial fluid flow also stimulate bone cells and regulate bone mass. However, the osteogenic potential of these components is not well established. Accordingly, the present study estimates the distribution of physiological muscle loading-induced mechanical environments such as normal strain, shear strain, pore pressure, and interstitial fluid flow in long bones.

Methods: A poroelastic finite element muscle standardized femur (MuscleSF) model is developed to compute the distribution of the mechanical environment as a function of bone porosities associated with osteoporotic and disuse bone loss.

Results: The results indicate the presence of higher shear strain and interstitial fluid motion near the minimal strain sites, i.e., the neutral axis of bending of femoral cross-sections. This suggests that secondary stimuli may maintain the bone mass at these locations. Pore pressure and interstitial fluid motion reduce with the increased porosity associated with bone disorders, possibly resulting in diminished skeletal mechano-sensitivity to exogenous loading.

Conclusions: These outcomes present a better understanding of mechanical environment-mediated regulation of site-specific bone mass, which can be beneficial in developing prophylactic exercise to prevent bone loss in osteoporosis and muscle disuse.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2023.107592DOI Listing

Publication Analysis

Top Keywords

interstitial fluid
20
bone mass
16
fluid motion
12
bone
12
normal strain
12
shear strain
12
muscle standardized
8
standardized femur
8
loading-induced mechanical
8
mechanical environments
8

Similar Publications

Regulation of Glutamate Transporter Type 1 by TSA and the Antiepileptic Mechanism of TSA.

Neurochem Res

January 2025

Huazhong University of Science and Technology, Tongji Medical College, Wuhan, Hubei, 430000, China.

Epilepsy (EP) is a neurological disorder characterized by abnormal, sudden neuronal discharges. Seizures increase extracellular glutamate levels, causing excitotoxic damage. Glutamate transporter type 1 (GLT-1) and its human homologue excitatory amino acid transporter-2 (EAAT2) clear 95% of extracellular glutamate.

View Article and Find Full Text PDF

Disseminated cancer cells in the peritoneal fluid often colonize omental fat-associated lymphoid clusters but the mechanisms are unclear. Here, we identify that innate-like B cells accumulate in the omentum of mice and women with early-stage ovarian cancer concomitantly with the extrusion of chromatin fibers by neutrophils called neutrophil extracellular traps (NETs). Studies using genetically modified NET-deficient mice, pharmacologic inhibition of NETs, and adoptive B cell transfer show that NETs induce expression of the chemoattractant CXCL13 in the pre-metastatic omentum, stimulating recruitment of peritoneal innate-like B cells that in turn promote expansion of regulatory T cells and omental metastasis through producing interleukin (IL)-10.

View Article and Find Full Text PDF

Purpose: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic lung disorder characterized by dry cough, fatigue, and exacerbated dyspnea. The prognosis of IPF is notably unfavorable, becoming extremely poor when the disease advances acutely. Effective therapeutic intervention is essential to mitigate disease progression; hence, early diagnosis and treatment are paramount.

View Article and Find Full Text PDF

Background: The brain is shielded from the peripheral circulation by central nervous system (CNS) barriers, comprising the well-known blood-brain barrier (BBB) and the less recognized blood-cerebrospinal fluid (CSF) barrier located within the brain ventricles. The gut microbiota represents a diverse and dynamic population of microorganisms that can influence the health of the host, including the development of neurological disorders like Alzheimer's disease (AD). However, the intricate mechanisms governing the interplay between the gut and brain remain elusive, and the means by which gut-derived signals traverse the CNS barriers remain unclear.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Queen's University, Kingston, ON, Canada; D'OR Institute for Research and Education, Rio de Janeiro, Rio de Janeiro, Brazil.

Background: Physical exercise improves overall brain health, cognition, and stimulates the release of extracellular vesicles (EVs) in humans. Exercise upregulates irisin, a myokine derived from fibronectin type III domain-containing protein 5 (FNDC5) previously shown to mediate the beneficial actions of exercise on memory in mouse models of Alzheimer's disease (AD). Here, we investigated if physical exercise upregulates EVs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!