Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Obesity in children is a global problem, leading to different medical conditions that may contribute to metabolic syndrome and increase the risk of diabetes, dyslipidemia, hypertension, and cardiovascular diseases in future health. Metabolic disorders are the results of the body's chemical process. The changes in the chemical compositions could be determined by Raman spectroscopy. Therefore, in this study, we measured blood collected from children with obesity to show chemical changes caused by obesity disease. Moreover, we will also show characteristic Raman peaks/regions, which could be used as a marker of obesity, not other metabolic syndromes. Children with obesity had higher glucose levels, proteins, and lipids than the control ones. Furthermore, it was noticed that the ratio between CO and C-H is 0.23 in control patients and 0.31 in children with obesity, as well as the ratio between amide II and amide I was 0.72 in control and 1.15 in obesity, which suggests an imbalance in these two fractions in childhood obesity. PCA with discrimination analyses showed that the accuracy, selectivity, and specificity of Raman spectroscopy in differentiation between childhood obesity and healthy children was between 93% and 100%. There is an increased risk of metabolic changes in childhood obesity with higher glucose levels, lipids, and proteins in children with obesity. Also, there were differences in the ratio between proteins and lipids functional groups and glucose, amide II, and amide I vibrations as a marker of obesity. The results of the study offer valuable insights into potential alterations in protein structure and lipid composition in children with obesity, emphasizing the importance of considering metabolic changes beyond traditional anthropometric, measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2023.115445 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!