Objective: The objective of this study is to examine the performance of new generation protection aprons as alternative to conventional lead aprons regarding their radiation protection effectiveness.

Method And Materials: Radiation protection aprons made of lead-containing and lead-free materials from a total of seven companies were compared. Furthermore, different lead equivalent values of 0.25, 0.35 and 0.5 mm were compared. For quantitative assessment, radiation attenuation was determined with increasing voltage in steps of 20 kV from 70 kV up to 130 kV.

Results: New generation aprons and conventional protection lead aprons showed a similar shielding performance at lower tube voltages below 90 kVp. When tube voltage was increased above 90 kVp, significant (p < 0.05) differences between the three apron types were observed, with conventional lead material as best shielding performer over lead composite and lead-free aprons.

Conclusion: We observed a similar radiation protection performance between conventional lead aprons and new generation aprons at low intensity radiation workplaces, with lead aprons being dominant for all energies. Only new generation aprons of 0.5 mm thickness would adequately replace 0.25 and 0.35 mm conventional lead aprons. For healthy radiation protection, the possibility of using weight-reduced X-ray aprons is very limited.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejrad.2023.110862DOI Listing

Publication Analysis

Top Keywords

radiation protection
16
protection aprons
12
lead aprons
8
protection
6
aprons
6
comparison radiation
4
radiation
4
protection radiation
4
aprons materials
4
materials objective
4

Similar Publications

The global challenge of wastewater contamination, especially from persistent pollutants like radioactive isotopes and heavy metals, demands innovative purification solutions. Radioactive iodine isotopes (I and I), stemming from nuclear activities, pose serious health risks due to their mobility, bioaccumulation, and ionizing radiation, particularly impacting thyroid health. Similarly, hexavalent chromium, Cr(VI), is highly toxic and persistent in water, linked to cancer and other severe health issues.

View Article and Find Full Text PDF

The Space Radiobiological Exposure Facility (SREF) is a general experimental facility at the China Space Station for scientific research in the fields of space radiation protection, space radiation biology, biotechnology, and the origin of life. The facility provides an environment with controllable temperatures for experiments with organic molecules and model organisms such as small animals, plant seeds, and microorganisms. The cultivation of small animals can be achieved in the facility with the use of microfluidic chips and images and videos of such experiments can be captured by microscopy.

View Article and Find Full Text PDF

Co-activating STING-TLR9 pathways promotes radiotherapy-induced cancer vaccination.

J Control Release

January 2025

College of Pharmaceutical Sciences, College of Chemistry, Chemical Engineering and Materials Science,, Soochow University, Suzhou 215123, People's Republic of China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China. Electronic address:

Vaccination may cure cancer patients by inducing tumor-specific immune responses. Radiotherapy is an appealing strategy to generate cancer vaccines in situ; thus far, however, only modest and short-lived immune responses are achieved. We here show that radiation combined with co-activating STING-TLR9 can generate powerful in situ cancer vaccines.

View Article and Find Full Text PDF

Radiation-induced cardiac disease: Modern techniques to reduce cardiac toxicity.

Pract Radiat Oncol

January 2025

The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.

Purpose: Continuous advancements in cancer management have resulted in increased long-term survival rates amongst cancer survivors and in turn have exposed the full extent of radiotherapy-associated morbidities. Radiation-induced coronary heart disease (RICHD) is one of the leading causes of morbidity and mortality in cancer survivors, particularly in those having undergone mediastinal radiation. While mediastinal radiation has been shown to substantially reduce both recurrence and mortality rates in multiple thoracic malignancies, the risk for the development of RICHD is of significant concern.

View Article and Find Full Text PDF

The lack of effective protection against UVB radiation, that severely disrupts the metabolism of keratinocytes, underlines the search for bioactive compounds that would provide effective protection without causing side effects. Therefore, the aim of the study has been to assess the effect of two compounds, that are different in terms of structure and properties: 3-O-ethyl ascorbic acid-EAA (a stable derivative of vitamin C) and cannabigerol-CBG, used separately or concurrently, on the metabolism of keratinocytes previously exposed to UVB. The obtained results indicate diverse, yet mutually reinforcing localization of the tested compounds, both within the membrane structures and cytosol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!