Woody species have evolved carbon (C) storage processes that meet needs for reserves associated with asynchronies between C supply and demand. However, our understanding of storage dynamics is still elusive in mature trees, especially when reproduction is involved. Integrated analyses of isotope ratios, concentrations, and biomass may enhance understanding of stored C fractions' dynamics and roles. Thus, we monitored starch and soluble sugars (SSs), C isotope ratios, and biomass, in leaves, twigs and reproductive organs of two mature evergreen broadleaf trees, Quercus glauca and Lithocarpus edulis, for two years. During the growing season, no starch was observed in twigs, while constant starch levels were observed in leaves. Increase in SSs for winter hardening was earlier in L. edulis than in Q. glauca, in line with L. edulis acorns' earlier ripening. Decrease in SSs and increase in starch occurred simultaneously in the next spring. In addition, sucrose accounted for less than 10% of total SSs in leaves of both species, whereas mannose accounted for up to 75% in Q. glauca and myo-inositol up to 23% in L. edulis, indicating species specific sugar composition. These results indicate that seasonal variation of SSs fraction was more reflective to climatic change and NSC storage was less influenced by reproduction. No starch was detected in acorn organs of either Q. glauca or L. edulis except in ripening seeds. The biomass of ripe acorns was 1.7- and 6.4-fold greater than that of current-year twigs in Q. glauca and L. edulis, respectively. Bulk twigs and reproductive organs were ca. 1.0‰ 13C enriched relative to bulk leaves, which was lower than in deciduous trees. These results indicate that new photo-assimilate is the predominant C source for reproductive growth. These findings provide new insights into the dynamics of C storage in relation to reproduction in evergreen broadleaf trees.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpad072DOI Listing

Publication Analysis

Top Keywords

evergreen broadleaf
12
broadleaf trees
12
glauca edulis
12
isotope ratios
8
twigs reproductive
8
reproductive organs
8
edulis
6
trees
5
starch
5
sss
5

Similar Publications

A global analysis of plant nutrient limitation affected by atmospheric nitrogen and phosphorous deposition.

Front Plant Sci

December 2024

State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Hangzhou, Zhejiang, China.

Uncovering the response of plant functional types (PFTs) to nutrient limitation caused by atmospheric deposition is critical for assessing the health of terrestrial ecosystems under climate change conditions. However, it remains unclear how atmospheric deposition and underlying ecological factors affect PFTs globally. To address this, we compiled a global dataset of four PFTs, i.

View Article and Find Full Text PDF

Context: Trees play a vital role in reducing street-level particulate matter (PM) pollution in metropolitan areas. However, the optimal tree growth type for maximizing the retention of various sizes of PM remains uncertain.

Objectives: This study assessed the PM reduction capabilities of evergreen and deciduous broadleaf street trees, focusing on how leaf phenology influences the dispersion of pollutants across particle sizes.

View Article and Find Full Text PDF

The Sichuan golden snub-nosed monkey (Rhinopithecus roxellana) was found to possess significant scientific and conservation value but faced multiple threats including habitat fragmentation and loss, human disturbance, illegal hunting, and the impacts of climate change on their habitat. To enhance habitat protection for this species, our study utilized field survey data and distribution records from protected areas to systematically evaluate spatial heterogeneity in suitable habitat distribution and habitat quality in Sichuan Province. Integration of 3S technology and ecological modeling allowed for a comprehensive assessment.

View Article and Find Full Text PDF

Warming Diminishes the Day-Night Discrepancy in the Apparent Temperature Sensitivity of Ecosystem Respiration.

Plants (Basel)

November 2024

Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, Harbin 150040, China.

Understanding the sensitivity of ecosystem respiration (ER) to increasing temperature is crucial to predict how the terrestrial carbon sink responds to a warming climate. The temperature sensitivity of ER may vary on a diurnal basis but is poorly understood due to the paucity of observational sites documenting real ER during daytime at a global scale. Here, we used an improved flux partitioning approach to estimate the apparent temperature sensitivity of ER during the daytime (E) and nighttime (E) derived from multiyear observations of 189 FLUXNET sites.

View Article and Find Full Text PDF

Background And Aims: Tropical forests exchange more carbon dioxide (CO2) with the atmosphere than any other terrestrial biome. Yet, uncertainty in the projected carbon balance over the next century is roughly three-times greater for the tropics than other ecosystems. Our limited knowledge of tropical plant physiological responses, including photosynthetic, to climate change is a substantial source of uncertainty in our ability to forecast the global terrestrial carbon sink.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!