Microglia modulate TNFα-mediated synaptic plasticity.

Glia

Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Published: September 2023

The pro-inflammatory cytokine tumor necrosis factor α (TNFα) tunes the capacity of neurons to express synaptic plasticity. It remains, however, unclear how TNFα mediates synaptic positive (=change) and negative (=stability) feedback mechanisms. We assessed effects of TNFα on microglia activation and synaptic transmission onto CA1 pyramidal neurons of mouse organotypic entorhino-hippocampal tissue cultures. TNFα mediated changes in excitatory and inhibitory neurotransmission in a concentration-dependent manner, where low concentration strengthened glutamatergic neurotransmission via synaptic accumulation of GluA1-only-containing AMPA receptors and higher concentration increased inhibition. The latter induced the synaptic accumulation of GluA1-only-containing AMPA receptors as well. However, activated, pro-inflammatory microglia mediated a homeostatic adjustment of excitatory synapses, that is, an initial increase in excitatory synaptic strength at 3 h returned to baseline within 24 h, while inhibitory neurotransmission increased. In microglia-depleted tissue cultures, synaptic strengthening triggered by high levels of TNFα persisted and the impact of TNFα on inhibitory neurotransmission was still observed and dependent on its concentration. These findings underscore the essential role of microglia in TNFα-mediated synaptic plasticity. They suggest that pro-inflammatory microglia mediate synaptic homeostasis, that is, negative feedback mechanisms, which may affect the ability of neurons to express further plasticity, thereby emphasizing the importance of microglia as gatekeepers of synaptic change and stability.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.24383DOI Listing

Publication Analysis

Top Keywords

synaptic plasticity
12
inhibitory neurotransmission
12
synaptic
11
tnfα-mediated synaptic
8
plasticity pro-inflammatory
8
neurons express
8
feedback mechanisms
8
tissue cultures
8
synaptic accumulation
8
accumulation glua1-only-containing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!