A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantification adsorption mechanisms of arsenic by goethite-modified biochar in aqueous solution. | LitMetric

Quantification adsorption mechanisms of arsenic by goethite-modified biochar in aqueous solution.

Environ Sci Pollut Res Int

School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.

Published: June 2023

In this study, rice straw biochar (BC), goethite (GT), and goethite-modified biochar (GBC) were prepared and their differences in adsorption characteristics and mechanisms of arsenic were explored to provide theoretical and data reference for future design of modified biochar, aiming to address adsorption mechanism weakness and improve the efficiency of arsenic removal in water. Various characterization methods were employed to evaluate the influence of pH, adsorption kinetics, isotherms, and chemical analyses of the materials. At temperatures of 283 K, 298 K, and 313 K, the maximum actual adsorption capacity followed the order GBC > GT > BC, while at 313 K, the maximum Langmuir adsorption capacity of GBC reached 149.63 mg/g which was 95.92 times that of BC and 6.27 times of GT. Due to precipitation and complexation mechanisms, GBC exhibited more superior arsenic adsorption capacities than BC and GT, contributing to total adsorption ranging from 88.9% to 94.2%. BC was dominated by complexation and ion exchange mechanisms in arsenic adsorption, with contribution proportions of 71.8%-77.6% and 19.1%-21.9%, respectively. In GT, the precipitation mechanism played a significant role in total adsorption, contributing from 78.0% to 84.7%. Although GBC has significant potential for removing arsenic from aqueous solutions, the findings suggest that its ion exchange capacity needs improvement.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-27585-yDOI Listing

Publication Analysis

Top Keywords

mechanisms arsenic
12
adsorption
9
goethite-modified biochar
8
313 k maximum
8
adsorption capacity
8
arsenic adsorption
8
total adsorption
8
ion exchange
8
arsenic
6
quantification adsorption
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!