Aedes aegypti, the principal global vector of arboviral diseases and previously considered to oviposit and undergo preimaginal development only in fresh water, has recently been shown to be capable of developing in coastal brackish water containing up to 15 g/L salt. We investigated surface changes in eggs and larval cuticles by atomic force and scanning electron microscopy, and larval susceptibility to two widely-used larvicides, temephos and Bacillus thuringiensis, in brackish water-adapted Ae. aegypti. Compared to freshwater forms, salinity-tolerant Ae. aegypti had rougher and less elastic egg surfaces, eggs that hatched better in brackish water, rougher larval cuticle surfaces, and larvae more resistant to the organophosphate insecticide temephos. Larval cuticle and egg surface changes in salinity-tolerant Ae. aegypti are proposed to respectively contribute to the increased temephos resistance and egg hatchability in brackish water. The findings highlight the importance of extending Aedes vector larval source reduction efforts to brackish water habitats and monitoring the efficacy of larvicides in coastal areas worldwide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198600 | PMC |
http://dx.doi.org/10.1038/s41598-023-35128-1 | DOI Listing |
Int J Mol Sci
January 2025
Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy.
Marine polysaccharide hydrogels have emerged as an innovative platform for regulating the in vivo release of natural bioactive compounds for medical purposes. These hydrogels, which have exceptional biocompatibility, biodegradability, and high water absorption capacity, create effective matrices for encapsulating different bioactive molecules. In addition, by modifying the physical and chemical properties of marine hydrogels, including cross-linking density, swelling behavior, and response to external stimuli like pH, temperature, or ionic strength, the release profile of encapsulated bioactive compounds is strictly regulated, thus maximizing therapeutic efficacy and minimizing side effects.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
In nature, bacteria often form heterogeneous communities enclosed in a complex matrix known as biofilms. This extracellular matrix, produced by the microorganisms themselves, serves as the first barrier between the cells and the environment. It is composed mainly of water, extracellular polymeric substances (EPS), lipids, proteins, and DNA.
View Article and Find Full Text PDFMicroorganisms
January 2025
Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli-IRCCS of Rome, 00168 Rome, Italy.
() is a Gram-negative, halophilic bacillus known for causing severe infections such as gastroenteritis, necrotizing fasciitis, and septic shock, with mortality rates exceeding 50% in high-risk individuals. Transmission occurs primarily through the consumption of contaminated seafood, exposure of open wounds to infected water, or, in rare cases, insect bites. The bacterium thrives in warm, brackish waters with high salinity levels, and its prevalence is rising due to the effects of climate change, including warming ocean temperatures and expanding coastal habitats.
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2024
School of Applied Engineering and Technology, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA.
The production of plastics and associated products, including microplastics (MPs), has been surging over the past several decades and now poses a grave environmental threat. This is because when not appropriately recycled, incinerated, or disposed of in fully contained landfills, plastic waste manifests as a potent pollutant, with vast amounts finding their way into oceans annually, adversely impacting marine life and ecosystems. Additionally, research also confirms there are direct impacts from MPs on water, air, and soil, impacting ecosystem and human health.
View Article and Find Full Text PDFSci Rep
January 2025
Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
Phytoplankton blooms exhibit varying patterns in timing and number of peaks within ecosystems. These differences in blooming patterns are partly explained by phytoplankton:nutrient interactions and external factors such as temperature, salinity and light availability. Understanding these interactions and drivers is essential for effective bloom management and modelling as driving factors potentially differ or are shared across ecosystems on regional scales.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!