Purpose: This study aimed to establish a radiomics nomogram model based on digital breast tomosynthesis (DBT) images, to predict the status of axillary lymph nodes (ALN) in patients with breast carcinoma.

Methods: The data of 120 patients with confirmed breast carcinoma, including 49 cases with axillary lymph node metastasis (ALNM), were retrospectively analyzed in this study. The dataset was randomly divided into a training group consisting of 84 patients (37 with ALNM) and a validation group comprising 36 patients (12 with ALNM). Clinical information was collected for all cases, and radiomics features were extracted from DBT images. Feature selection was performed to develop the Radscore model. Univariate and multivariate logistic regression analysis were employed to identify independent risk factors for constructing both the clinical model and nomogram model. To evaluate the performance of these models, receiver operating characteristic (ROC) curve analysis, calibration curve, decision curve analysis (DCA), net reclassification improvement (NRI), and integrated discriminatory improvement (IDI) were conducted.

Results: The clinical model identified tumor margin and DBT_reported_LNM as independent risk factors, while the Radscore model was constructed using 9 selected radiomics features. Incorporating tumor margin, DBT_reported_LNM, and Radscore, the radiomics nomogram model exhibited superior performance with AUC values of 0.933 and 0.920 in both datasets, respectively. The NRI and IDI showed a significant improvement, suggesting that the Radscore may serve as a useful biomarker for predicting ALN status.

Conclusion: The radiomics nomogram based on DBT demonstrated effective preoperative prediction performance for ALNM in patients with breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00432-023-04859-zDOI Listing

Publication Analysis

Top Keywords

radiomics nomogram
16
axillary lymph
12
nomogram model
12
nomogram based
8
based digital
8
digital breast
8
breast tomosynthesis
8
lymph node
8
node metastasis
8
breast carcinoma
8

Similar Publications

Rationale And Objectives: Inflammation and immune biomarkers can promote angiogenesis and proliferation and metastasis of esophageal squamous cell carcinoma (ESCC). The degree of pathological grade reflects the tumor heterogeneity of ESCC. The purpose is to develop and validate a nomogram based on enhanced CT multidimensional radiomics combined with inflammatory immune score (IIS) for predicting poorly differentiated ESCC.

View Article and Find Full Text PDF

Objective: To assess the efficacy of computed tomography (CT)-based radiomics nomogram in predicting perineural invasion (PNI) in patients with hypopharyngeal squamous cell carcinoma (HPSCC).

Materials And Methods: Overall, 146 patients were retrospectively recruited and divided into training and test cohorts at a 7:3 ratio. Radiomics features were extracted and delta and absolute delta radiomics features were calculated.

View Article and Find Full Text PDF

Objective: Immunotherapy has become an option for the first-line therapy of advanced gastric cancer (GC), with improved survival. Our study aimed to investigate unresectable GC from an imaging perspective combined with clinicopathological variables to identify patients who were most likely to benefit from immunotherapy.

Method: Patients with unresectable GC who were consecutively treated with immunotherapy at two different medical centers of Chinese PLA General Hospital were included and divided into the training and validation cohorts, respectively.

View Article and Find Full Text PDF

High-risk habitat radiomics model based on ultrasound images for predicting lateral neck lymph node metastasis in differentiated thyroid cancer.

BMC Med Imaging

January 2025

Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shang tang Road, Hangzhou, Zhejiang, 310011, China.

Background: This study aims to evaluate the predictive usefulness of a habitat radiomics model based on ultrasound images for anticipating lateral neck lymph node metastasis (LLNM) in differentiated thyroid cancer (DTC), and for pinpointing high-risk habitat regions and significant radiomics traits.

Methods: A group of 214 patients diagnosed with differentiated thyroid carcinoma (DTC) between August 2021 and August 2023 were included, consisting of 107 patients with confirmed postoperative lateral lymph node metastasis (LLNM) and 107 patients without metastasis or lateral cervical lymph node involvement. An additional cohort of 43 patients was recruited to serve as an independent external testing group for this study.

View Article and Find Full Text PDF

Objective: To develop an automatic segmentation model to delineate the adnexal masses and construct a machine learning model to differentiate between low malignant risk and intermediate-high malignant risk of adnexal masses based on ovarian-adnexal reporting and data system (O-RADS).

Methods: A total of 663 ultrasound images of adnexal mass were collected and divided into two sets according to experienced radiologists: a low malignant risk set (n = 446) and an intermediate-high malignant risk set (n = 217). Deep learning segmentation models were trained and selected to automatically segment adnexal masses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!