Approaching the level of molecular recognition of enzymes with solid catalysts is a challenging goal, achieved in this work for the competing transalkylation and disproportionation of diethylbenzene catalyzed by acid zeolites. The key diaryl intermediates for the two competing reactions only differ in the number of ethyl substituents in the aromatic rings, and therefore finding a selective zeolite able to recognize this subtle difference requires an accurate balance of the stabilization of reaction intermediates and transition states inside the zeolite microporous voids. In this work we present a computational methodology that, by combining a fast high-throughput screeening of all zeolite structures able to stabilize the key intermediates with a more computationally demanding mechanistic study only on the most promising candidates, guides the selection of the zeolite structures to be synthesized. The methodology presented is validated experimentally and allows to go beyond the conventional criteria of zeolite shape-selectivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198988PMC
http://dx.doi.org/10.1038/s41467-023-38544-zDOI Listing

Publication Analysis

Top Keywords

zeolite structures
8
zeolite
5
approaching enzymatic
4
enzymatic catalysis
4
catalysis zeolites
4
zeolites select
4
select reaction
4
reaction mechanism
4
mechanism competing
4
competing approaching
4

Similar Publications

Structure-Reactivity Relationship of Zeolite-Confined Rh Catalysts for Hydroformylation of Linear α-Olefins.

J Am Chem Soc

January 2025

Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.

Substituting the molecular metal complexes used in the industrial olefin hydroformylation process is of great significance in fundamental research and practical application. One of the major difficulties in replacing the classic molecular metal catalysts with supported metal catalysts is the low chemoselectivity and regioselectivity of the supported metal catalysts because of the lack of a well-defined coordination environment of the metal active sites. In this work, we have systematically studied the influences of key factors (crystallinity, alkali promoters, etc.

View Article and Find Full Text PDF

Modeling ethanol/water adsorption in all-silica zeolites using the real adsorbed solution theory.

J Chem Phys

January 2025

Department of Chemical Engineering, University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, Massachusetts 01003-9303, USA.

A comprehensive set of single-component and binary isotherms were collected for ethanol/water adsorption into the siliceous forms of 185 known zeolites using grand-canonical Monte Carlo simulations. Using these data, a systematic analysis of ideal/real adsorbed-solution theory (IAST/RAST) was conducted and activity coefficients were derived for ethanol/water mixtures adsorbed in different zeolites based on RAST. It was found that activity coefficients of ethanol are close to unity while activity coefficients of water are larger in most zeolites, indicating a positive excess free energy of the mixture.

View Article and Find Full Text PDF

Lattice Oxygen Redox Dynamics in Zeolite-Encapsulated CsPbBr Perovskite OER Electrocatalysts.

Adv Sci (Weinh)

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.

Understanding the oxygen evolution reaction (OER) mechanism is pivotal for improving the overall efficiency of water electrolysis. Despite methylammonium lead halide perovskites (MAPbX) have shown promising OER performance due to their soft-lattice nature that allows lattice-oxygen oxidation of active α-PbO layer surface, the role of A-site MA or X-site elements in the electrochemical reconstruction and OER mechanisms has yet to be explored. Here, it is demonstrated that the OER mechanism of perovskite@zeolite composites is intrinsically dominated by the A-site group of lead-halide perovskites, while the type of X-site halogen is crucial for the reconstruction kinetics of the composites.

View Article and Find Full Text PDF

A simple, fast, and cost-effective colorimetric nitrite (NO) sensor based on ZIF-67-derived CoO nanocomposite (ZCo-2 NC) structure has been developed. The prepared colorimetric sensor (ZCo-2 NC) was employed to sensitively detect NO in drinking water system by the exhibition of promising peroxidase-mimicking nanozyme-like features. The sensor manifest well-determined sensing response with excellent linear and wide range of NO sensitivity (0.

View Article and Find Full Text PDF

Biocompatible dually reinforced gellan gum hydrogels with selective antibacterial activity.

Carbohydr Polym

March 2025

School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China. Electronic address:

The poor mechanics and functionality of natural-polymer hydrogels from gellan gum (GG) prohibit their practical application, despite the intrinsic thermo-reversible gelation nature, structural and quality consistency, biocompatibility, biodegradability and sustainability of microbial fermentation-produced GG. Herein, a dual-reinforcing strategy, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!