Combining metal complexes with amphiphilic molecules leads to a wide variety of functional self-assembled nanostructures. Metal complexes exhibiting spin transitions can be good candidates as the trigger to cause structural conversion of such assembly because they respond to various external stimuli. In this work, we studied a structural conversion of a supramolecular assembly containing a [Co Fe ] complex through a thermally induced electron transfer-coupled spin transition (ETCST). With an amphiphilic anion, the [Co Fe ] complex formed reverse vesicles in solution and showed thermal ETCST. In contrast, thermal ETCST in the presence of a bridging hydrogen-bond donor caused structural conversion from the reverse vesicle structure to entangled one-dimensional chains through hydrogen bond formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202300954 | DOI Listing |
Nanomicro Lett
January 2025
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
Finding ways to produce dense and smooth perovskite films with negligible defects is vital for achieving high-efficiency perovskite solar cells (PSCs). Herein, we aim to enhance the quality of the perovskite films through the utilization of a multifunctional additive in the perovskite anti-solvent, a strategy referred to as anti-solvent additive engineering. Specifically, we introduce ortho-substituted-4'-(4,4″-di-tert-butyl-1,1':3',1″-terphenyl)-graphdiyne (o-TB-GDY) as an AAE additive, characterized by its sp/sp-cohybridized and highly π-conjugated structure, into the anti-solvent.
View Article and Find Full Text PDFAcc Chem Res
January 2025
The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2024
A theoretical method is proposed for generating far-zone scattered fields with concentric ring-like intensity distribution by properly controlling the distribution characteristics of particles. As an example, a collection of anisotropic Gaussian-centered determinate particles with quasi-homogeneous distribution is discussed. The results show that the number and size of concentric rings can be flexibly adjusted by controlling the structural parameters of the collection of particles.
View Article and Find Full Text PDFNanoscale
January 2025
School of Physics, Trinity College Dublin, Dublin 2, D02 PN40, Ireland.
Research into novel two-dimensional (2D) materials has boomed over the past decade, with a bewildering diversity of distinct properties being discovered. In this work, layered PtSe, grown by chemical vapor deposition and thermally converted to non-layered tetragonal PtSe, is experimentally and theoretically investigated. Notably, the resultant PtSe is distinctly metallic, which highlights the significance of sub-stoichiometric phases within transition metal dichalcogenide films.
View Article and Find Full Text PDFDalton Trans
January 2025
School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, P. R. China.
A BCA -coordinated MOF (1) was initially discovered to exhibit electron transfer photochromism. Remarkably, the photogenerated radicals (1P) showed a maximum absorption enhancement peak at 1158 nm, resulting from the synergistic effects of planar π-conjugation induced by -coordination and π-π interactions among [BCA]˙˙ radicals, thereby promoting the NIR-II photothermal effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!