A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Testosterone ameliorated the behavioural deficits of gonadectomised rats and counteracted free radicals in a dosage-dependent manner. | LitMetric

Testosterone deficiency may induce behavioural changes in individuals. Oxidative stress resulting from a redox imbalance may be implicated in the initiation and progression of neurobehavioural disorders. However, whether exogenous testosterone intervention in male gonadectomised (GDX) rats ameliorates oxidative stress and plays a neuroprotective role remains unknown. Therefore, we examined this hypothesis by performing sham or gonadectomy surgeries on Sprague-Dawley rats with or without supplementation with different doses of testosterone propionate (TP). Open field and Morris water maze tests were performed, the serum and brain testosterone levels, and oxidative stress markers were analysed. GDX and lower TP doses (0.5 mg/kg) induced reduced exploratory and motor behaviours, but impaired spatial learning and memory compared to Sham rats. Administration of physiological TP levels (0.75-1.25 mg/kg) to the GDX rats restored the behaviour observed in the intact rats. However, higher TP doses (1.5-3.0 mg/kg) induced increased exploratory and motor behaviours but impaired spatial learning and memory. These behavioural impairments were accompanied by a marked decrease in levels of antioxidant enzymes (superoxide dismutase and catalase) and an increase in lipid peroxidation levels in the substantia nigra and hippocampus. These findings indicate that TP administration can alter behavioural performance and induce memory and learning impairment, which may result from changes in redox homeostasis in male GDX animals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2023.114501DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
gdx rats
8
exploratory motor
8
motor behaviours
8
behaviours impaired
8
impaired spatial
8
spatial learning
8
learning memory
8
rats
6
testosterone
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!