Identification, expression profiling, and functional characterization of cystatin C from big-belly seahorse (Hippocampus abdominalis).

Fish Shellfish Immunol

Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea; Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea. Electronic address:

Published: July 2023

Cystatins are natural inhibitors of lysosomal cysteine proteases, including cathepsins B, L, H, and S. Cystatin C (CSTC) is a member of the type 2 cystatin family and is an essential biomarker in the prognosis of several diseases. Emerging evidence suggests the immune regulatory roles of CSTC in antigen presentation, the release of different inflammatory mediators, and apoptosis in various pathophysiologies. In this study, the 390-bp cystatin C (HaCSTC) cDNA from big-belly seahorse (Hippocampus abdominalis) was cloned and characterized by screening the pre-established cDNA library. Based on similarities in sequence, HaCSTC is a homolog of the teleost type 2 cystatin family with putative catalytic cystatin domains, signal peptides, and disulfide bonds. HaCSTC transcripts were ubiquitously expressed in all tested big-belly seahorse tissues, with the highest expression in ovaries. Immune challenge with lipopolysaccharides, polyinosinic:polycytidylic acid, Edwardsiella tarda, and Streptococcus iniae caused significant upregulation in HaCSTC transcript levels. Using a pMAL-c5X expression vector, the 14.29-kDa protein of recombinant HaCSTC (rHaCSTC) was expressed in Escherichia coli BL21 (DE3), and its protease inhibitory activity against papain cysteine protease was determined with the aid of a protease substrate. Papain was competitively blocked by rHaCSTC in a dose-dependent manner. In response to viral hemorrhagic septicemia virus (VHSV) infection, HaCSTC overexpression strongly decreased the expression of VHSV transcripts, pro-inflammatory cytokines, and pro-apoptotic genes; while increasing the expression of anti-apoptotic genes in fathead minnow (FHM) cells. Furthermore, HaCSTC overexpression protected VHSV-infected FHM cells against VHSV-induced apoptosis and increased cell viability. Our findings imply the profound role of HaCSTC against pathogen infections by modulating fish immune responses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2023.108804DOI Listing

Publication Analysis

Top Keywords

big-belly seahorse
12
seahorse hippocampus
8
hippocampus abdominalis
8
type cystatin
8
cystatin family
8
hacstc
8
hacstc overexpression
8
fhm cells
8
cystatin
6
identification expression
4

Similar Publications

Host-intestinal microbiota interactions in Edwardsiella piscicida-induced lethal enteritis in big-belly seahorses: Novel insights into the role of Carbohydrate-Active enzymes and host transcriptional responses.

Fish Shellfish Immunol

January 2025

School of Fisheries, Ludong University, Yantai, 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, 264025, China. Electronic address:

Edwardsiella piscicida-induced lethal enteritis is a major threat to the sustainable development of seahorse aquaculture. The roles of Carbohydrate-Active enzymes (CAZymes) in interactions between the pathogen and the host are poorly understood. In this study, we found that 22 key CAZymes encoded by E.

View Article and Find Full Text PDF

Uncovering the mechanism underlying the pathogenesis of induced enteritis is essential for global aquaculture. In the present study, we identified as a lethal pathogen of the big-belly seahorse () and revealed its pathogenic pattern and characteristics by updating our established bacterial enteritis model and evaluation system. Conjoint analysis of metagenomic and metabolomic data showed that 15 core virulence factors could mutually coordinate the remodeling of intestinal microorganisms and host metabolism and induce enteritis in the big-belly seahorse.

View Article and Find Full Text PDF

Identification, expression profiling, and functional characterization of cystatin C from big-belly seahorse (Hippocampus abdominalis).

Fish Shellfish Immunol

July 2023

Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea; Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea. Electronic address:

Cystatins are natural inhibitors of lysosomal cysteine proteases, including cathepsins B, L, H, and S. Cystatin C (CSTC) is a member of the type 2 cystatin family and is an essential biomarker in the prognosis of several diseases. Emerging evidence suggests the immune regulatory roles of CSTC in antigen presentation, the release of different inflammatory mediators, and apoptosis in various pathophysiologies.

View Article and Find Full Text PDF

Background: Betanodaviruses, members of the Nodaviridae family, are the causative agents of viral nervous necrosis in fish, resulting in great economic losses worldwide.

Methods: In this study, we isolated a virus strain named seahorse nervous necrosis virus (SHNNV) from cultured big-belly seahorses Hippocampus abdominalis in Xiamen city, Fujian Province, China. Virus isolation, PCR detection, phylogenetic analysis, qRT-PCR, fluorescence in situ hybridization and histology were used for virus identification and analysis of virus histopathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!