Introduction: Reforestation of degraded lands in the boreal forest is challenging and depends on the direction and strength of the plant-soil feedback (PSF).

Methods: Using a gradient in tree productivity (null, low and high) from a long-term, spatially replicated reforestation experiment of borrow pits in the boreal forest, we investigated the interplay between microbial communities and soil and tree nutrient stocks and concentrations in relation to a positive PSF induced by wood mulch amendment.

Results: Three levels of mulch amendment underlie the observed gradient in tree productivity, and plots that had been amended with a continuous layer of mulch 17 years earlier showed a positive PSF with trees up to 6 m tall, a closed canopy, and a developing humus layer. The average taxonomic and functional composition of the bacterial and fungal communities differed markedly betweenlow- and high-productivity plots. Trees in high-productivity plots recruited a specialized soil microbiome that was more efficient at nutrient mobilization and acquisition. These plots showed increases in carbon (C), calcium (Ca), nitrogen (N), potassium (K), and phosphorus (P) stocks and as well as bacterial and fungal biomass. The soil microbiome was dominated by taxa from the fungal genus Cortinarius and the bacterial family Chitinophagaceae, and a complex microbial network with higher connectivity and more keystone species supported tree productivity in reforested plots compared to unproductive plots.

Discussion: Therefore, mulching of plots resulted in a microbially mediated PSF that enhances mineral weathering and non-symbiotic N fixation, and in turn helps transform unproductive plots into productive plots to ensure rapid restoration of the forest ecosystem in a harsh boreal environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10191178PMC
http://dx.doi.org/10.3389/fpls.2023.1122445DOI Listing

Publication Analysis

Top Keywords

boreal forest
12
tree productivity
12
wood mulch
8
microbially mediated
8
plant-soil feedback
8
gradient tree
8
positive psf
8
plots
8
bacterial fungal
8
high-productivity plots
8

Similar Publications

Rapid warming in polar regions is causing large changes to ecosystems, including altering environmentally available mercury (Hg). Although subarctic freshwater systems have simple vertebrate communities, Hg in amphibians remains unexplored. We measured total Hg (THg) in wetland sediments and methylmercury (MeHg) in multiple life-stages (eggs to adults) of wood frogs (Rana sylvatica) and larval boreal chorus frogs (Pseudacris maculata) from up to 25 wetlands near Churchill, Manitoba (Canada), during the summers of 2018-2019.

View Article and Find Full Text PDF

Microbial communities in the phyllosphere and endosphere of Norway spruce under attack by .

Front Microbiol

January 2025

Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.

species complex has been regarded as the most destructive disease agent of conifer trees in boreal forests. Tree microbiome can regulate the plant-pathogen interactions by influencing both host resistance and pathogen virulence. Such information would help to improve the future health of forests and explore strategies to enhance ecosystem stability.

View Article and Find Full Text PDF

Wildfires: Burning our way to a 'hot house Earth'?

Curr Biol

January 2025

Fire Centre, Discipline of Biological Sciences, School of Natural Sciences, Private Bag 55, University of Tasmania, Hobart, TAS 7001, Australia.

A new global analysis shows that wildfires turn temperate and boreal forests into major emitters of greenhouse gases - instead of storing carbon. Without sustainable forest fire management, forest fires may amplify climate change, leading to irreversible ecological changes.

View Article and Find Full Text PDF

Permafrost soils store vast amounts of organic carbon, and their thawing due to climate warming accelerates the release of carbon as methane and carbon dioxide, exacerbating global climate change. Understanding the distribution of greenhouse gases trapped in these soils and predicting their behavior upon thawing is essential for accurately modeling climate feedbacks. This study presents an integrated biogeochemical and microbial dataset from ~1.

View Article and Find Full Text PDF

Climate change poses significant consequences for temperate bat species, potentially altering their distribution ranges and generating novel interactions among species sharing similar ecological niches. Recent observations suggest distribution range expansion in the Palearctic aerial hawking bat, , prompting an investigation into its interaction with , a northern Palearctic species overlapping with the previous in many ecological characteristics. This study examines the spatiotemporal variations between the two boreal bat species to form an evidence-based background onto which future research on, e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!