Malaria remains one of the most common human infections worldwide. In endemic areas, malaria is a leading cause of morbidity and mortality and it imposes significant socioeconomic burdens on the people affected. Monocytes are part of the immune system controlling parasite burden and protecting the host against malaria infection. Monocytes play their protective roles against malaria via phagocytosis, cytokine production and antigen presentation. Though monocytes are crucial for clearance of malaria infection, they have also been shown to cause adverse clinical outcomes. In this review, we discuss recent findings regarding the role of monocytes in malaria via mechanisms such as parasite detection and clearance, pro-inflammatory activities, and activation of other immune components. We also highlight the role of different monocyte subsets, and other myeloid cells that are involved in malaria infection. However, more investigations are required in order to explore the exact roles of these monocytes in malaria infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189572 | PMC |
http://dx.doi.org/10.5114/ceji.2023.126650 | DOI Listing |
Malar J
January 2025
Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
Background: In moderate-to-high malaria transmission regions, the World Health Organization recommends intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) alongside insecticide-treated bed nets to reduce the adverse consequences of pregnancy-associated malaria. Due to high-grade Plasmodium falciparum resistance to SP, novel treatment regimens need to be evaluated for IPTp, but these increase pill burden and treatment days. The present qualitative study assessed the acceptability of IPTp-SP plus dihydroartemisinin-piperaquine (DP) in Papua New Guinea, where IPTp-SP was implemented in 2009.
View Article and Find Full Text PDFBackground: Under-5 children have been known to bear a significant burden of malaria in endemic countries. Though significant progress has been made towards malaria prevention and control in Nigeria, it is expected that the addition of new malaria prevention strategy, such as perennial malaria chemoprevention (PMC) can contribute to a more rapid decline in malaria cases. This study aimed to determine the prevalence and factors associated with malaria and anaemia among children aged 2-18 months in Osun State.
View Article and Find Full Text PDFThe clinical development of novel vaccines, injectable therapeutics, and oral chemoprevention drugs has the potential to deliver significant advancements in the prevention of Plasmodium falciparum malaria. These innovations could support regions in accelerating malaria control, transforming existing intervention packages by supplementing interventions with imperfect effectiveness or offering an entirely new tool. However, to layer new medical tools as part of an existing programme, malaria researchers must come to an agreement on the gaps that currently limit the effectiveness of medical interventions for moderate to low transmission settings.
View Article and Find Full Text PDFLancet Microbe
December 2024
Jenner Institute, University of Oxford-NIHR Oxford Biomedical Research Centre, Oxford, UK. Electronic address:
Background: Malaria remains a substantial public health burden among young children in sub-Saharan Africa and a highly efficacious vaccine eliciting a durable immune response would be a useful tool for controlling malaria. R21 is a malaria vaccine comprising nanoparticles, formed from a circumsporozoite protein and hepatitis B surface antigen (HBsAg) fusion protein, without any unfused HBsAg, and is administered with the saponin-based Matrix-M adjuvant. This study aimed to assess the safety and immunogenicity of the malaria vaccine candidate, R21, administered with or without adjuvant Matrix-M in adults naïve to malaria infection and in healthy adults from malaria endemic areas.
View Article and Find Full Text PDFLancet Microbe
January 2025
Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK.
Background: R21 is a novel malaria vaccine, composed of a fusion protein of the malaria circumsporozoite protein and hepatitis B surface antigen. Following favourable safety and immunogenicity in a phase 1 study, we aimed to assess the efficacy of R21 administered with Matrix-M (R21/MM) against clinical malaria in adults from the UK who were malaria naive in a controlled human malaria infection study.
Methods: In this open-label, partially blinded, phase 1-2A controlled human malaria infection study undertaken in Oxford, Southampton, and London, UK, we tested five novel vaccination regimens of R21/MM.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!