Mesenchymal stem cells (MSCs) are effective in hematopoietic engraftment and tissue repair in stem cell transplantation. In addition, these cells control the process of hematopoiesis by secreting growth factors and cytokines. The aim of the present study is to investigate the effect of rat bone marrow (BM)-derived MSCs on the granulocyte differentiation of rat BM-resident C-kit hematopoietic stem cells (HSCs). The mononuclear cells were collected from rat BM using density gradient centrifugation and MSCs and C-kit HSCs were isolated. Then, cells were divided into two groups and differentiated into granulocytes; C-kit HSCs alone (control group) and co-cultured C-kit HSCs with MSCs (experimental group). Subsequently, the granulocyte-differentiated cells were collected and subjected to real-time PCR and Western blotting for the assessment of their telomere length (TL) and protein expressions, respectively. Afterwards, culture medium was collected to measure cytokine levels. CD34, CD16, CD11b, and CD18 granulocyte markers expression levels were significantly increased in the experimental group compared to the control group. A significant change was also observed in the protein expression of Wnt and β-catenin. In addition, MSCs caused an increase in the TL of granulocyte-differentiated cells. MSCs could affect the granulocyte differentiation of C-kit HSCs via increasing TL and Wnt/β-catenin protein expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189093PMC
http://dx.doi.org/10.1016/j.reth.2023.04.004DOI Listing

Publication Analysis

Top Keywords

stem cells
16
c-kit hscs
16
granulocyte differentiation
12
cells
9
differentiation rat
8
rat bone
8
bone marrow
8
c-kit hematopoietic
8
hematopoietic stem
8
mesenchymal stem
8

Similar Publications

Rotator cuff tendon injuries often lead to shoulder pain and dysfunction. Traditional treatments such as surgery and physical therapy can provide temporary relief, but it is difficult to achieve complete healing of the tendon, mainly because of the limited repair capacity of the tendon cells. Therefore, it is particularly urgent to explore new treatment methods.

View Article and Find Full Text PDF

Cell therapy is an emerging strategy for precision treatment of scleroderma. This review systematically summarizes the research progress of mesenchymal stem cell (MSC) and chimeric antigen receptor T cell (CAR-T) therapies in scleroderma and discusses the challenges and future directions for development. MSCs possess multiple functions, including immunomodulation, anti-fibrosis, and promotion of vascular regeneration, all of which can improve multiple pathological processes associated with scleroderma.

View Article and Find Full Text PDF

Pathogenesis and regenerative therapy in vitiligo and alopecia areata: focus on hair follicle.

Front Med (Lausanne)

January 2025

Department of Dermatology, Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.

Vitiligo is an autoimmune disease characterized by the loss of functional melanocytes in the hair follicles and epidermis, leading to white patches on the skin and mucous membranes. Alopecia areata (AA) is a common immune-mediated condition in which autoimmune attack on hair follicles cause non-scarring hair loss. Both diseases significantly impact patients's physical and mental health.

View Article and Find Full Text PDF

Background And Purpose: The characteristics and role of NOD-like receptor (NLR) signaling pathway in high-grade gliomas were still unclear. This study aimed to reveal the association of NLR with clinical heterogeneity of glioblastoma (GBM) patients, and to explore the role of NLR pathway hub genes in the occurrence and development of GBM.

Methods: Transcriptomic data from 496 GBM patients with complete prognostic information were obtained from the TCGA, GEO, and CGGA databases.

View Article and Find Full Text PDF

Crohn's disease (CD) causes gastrointestinal symptoms (i.e., diarrhea and abdominal pain), systemic symptoms (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!