Cell sheet-based scaffold-free technology holds promise for tissue engineering applications and has been extensively explored during the past decades. However, efficient harvest and handling of cell sheets remain challenging, including insufficient extracellular matrix content and poor mechanical strength. Mechanical loading has been widely used to enhance extracellular matrix production in a variety of cell types. However, currently, there are no effective ways to apply mechanical loading to cell sheets. In this study, we prepared thermo-responsive elastomer substrates by grafting poly(N-isopropyl acrylamide) (PNIPAAm) to poly(dimethylsiloxane) (PDMS) surfaces. The effect of PNIPAAm grafting yields on cell behaviours was investigated to optimize surfaces suitable for cell sheet culturing and harvesting. Subsequently, MC3T3-E1 cells were cultured on the PDMS-g-PNIPAAm substrates under mechanical stimulation by cyclically stretching the substrates. Upon maturation, the cell sheets were harvested by lowering the temperature. We found that the extracellular matrix content and thickness of cell sheet were markedly elevated upon appropriate mechanical conditioning. Reverse transcription quantitative polymerase chain reaction and Western blot analyses further confirmed that the expression of osteogenic-specific genes and major matrix components were up-regulated. After implantation into the critical-sized calvarial defects of mice, the mechanically conditioned cell sheets significantly promoted new bone formation. Findings from this study reveal that thermo-responsive elastomer, together with mechanical conditioning, can potentially be applied to prepare high-quality cell sheets for bone tissue engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189809 | PMC |
http://dx.doi.org/10.12336/biomatertransl.2023.01.005 | DOI Listing |
Chemistry
January 2025
Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.
Chlorinated polymers have made enormous contributions to materials science and are commercially produced on a large scale. These chlorinated polymers could be recycled as chlorine sources to efficiently produce valuable chlorinated compounds owing to their facile release of HCl. Although the thermal stability of PVDC is low compared to PVC, this can be advantageous in terms of easy and fast dehydrochlorination.
View Article and Find Full Text PDFJ Toxicol Pathol
January 2025
Safety Research Laboratory, Kissei Pharmaceutical Co., Ltd., 2320-1 Maki, Hotaka, Azumino, Nagano 399-8305, Japan.
We report the features of spontaneous bilateral thyroid follicular cell carcinoma in a 10-year-old male beagle. Necropsy revealed bilateral masses on the trachea, corresponding to the left and right sides of the thyroid gland. The masses were elastic, encapsulated, and distinct, with no connecting tumor tissues between them.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Institute for Human Genetics, University Medical Center Johannes Gutenberg University, 55131, Mainz, Germany.
Background: Tissue clearing combined with light-sheet microscopy is gaining popularity among neuroscientists interested in unbiased assessment of their samples in 3D volume. However, the analysis of such data remains a challenge. ClearMap and CellFinder are tools for analyzing neuronal activity maps in an intact volume of cleared mouse brains.
View Article and Find Full Text PDFRev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
Epithelial sheets evolved the capacity to fold and reform to create a lumen and therefore new environments. For humans, forming a lumen during gastrulation has been viewed as perhaps the most crucial biological process of our life and it is regulated by multiple electrical forces.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
GABAergic neurons in basal forebrain (BF) nuclei project densely to all layers of the mouse main olfactory bulb (OB), the first relay in odor information processing. However, BF projection neurons are diverse and the contribution of each subtype to odor information processing is not known. In the present study, we used retrograde and anterograde tracing methods together with whole-brain light-sheet analyses, patch-clamp recordings coupled with optogenetic and chemogenetic approaches during spontaneous odor discrimination, and go/no-go odor discrimination/learning tests to characterize the synaptic targets in the OB of BF calretinin-expressing (CR+) GABAergic cells and to reveal their functional implications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!