A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Real-time tracking of fibrinolysis under constant wall shear and various pulsatile flows in an in-vitro thrombolysis model. | LitMetric

A great need exists for the development of a more representative in-vitro model to efficiently screen novel thrombolytic therapies. We herein report the design, validation, and characterization of a highly reproducible, physiological scale, flowing clot lysis platform with real-time fibrinolysis monitoring to screen thrombolytic drugs utilizing a fluorescein isothiocyanate (FITC)-labeled clot analog. Using this Real-Time Fluorometric Flowing Fibrinolysis assay (RT-FluFF assay), a tPa-dependent degree of thrombolysis was observed both via clot mass loss as well as fluorometrically monitored release of FITC-labeled fibrin degradation products. Percent clot mass loss ranged from 33.6% to 85.9% with fluorescence release rates of 0.53 to 1.17 RFU/min in 40 and 1000 ng/mL tPa conditions, respectively. The platform is easily adapted to produce pulsatile flows. Hemodynamics of human main pulmonary artery were mimicked through matching dimensionless flow parameters calculated using clinical data. Increasing pressure amplitude range (4-40 mmHg) results in a 20% increase of fibrinolysis at 1000 ng/mL tPA. Increasing shear flow rate (205-913 s) significantly increases fibrinolysis and mechanical digestion. These findings suggest pulsatile level affects thrombolytic drug activities and the proposed in-vitro clot model offers a versatile testing platform for thrombolytic drug screening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189439PMC
http://dx.doi.org/10.1002/btm2.10511DOI Listing

Publication Analysis

Top Keywords

pulsatile flows
8
clot mass
8
mass loss
8
1000 ng/ml tpa
8
thrombolytic drug
8
fibrinolysis
5
clot
5
real-time tracking
4
tracking fibrinolysis
4
fibrinolysis constant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!