: A treasure trove of anti-cancer compounds targeting TP53 protein using and techniques.

Front Chem

Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.

Published: April 2023

Cancer is a primary global health concern, and researchers seek innovative approaches to combat the disease. Clinical bioinformatics and high-throughput proteomics technologies provide powerful tools to explore cancer biology. Medicinal plants are considered effective therapeutic agents, and computer-aided drug design (CAAD) is used to identify novel drug candidates from plant extracts. The tumour suppressor protein TP53 is an attractive target for drug development, given its crucial role in cancer pathogenesis. This study used a dried extract of seeds to identify phytocompounds targeting TP53 in cancer. We apply qualitative tests to determine its phytochemicals (Alkaloid, Tannin, Saponin, Phlobatinin, and Cardic glycoside), and found that alkaloid composed of 9.4% ± 0.04% and Saponin 1.9% ± 0.05% crude chemical constituent. In the results of DPPH Analysis Seeds founded antioxidant activity, and then we verified via observing methanol extract (79.82%), BHT (81.73%), and n-hexane extract (51.31%) found to be positive. For Inhibition of oxidation, we observe BHT is 90.25%, and Methanol (83.42%) has the most significant proportion of linoleic acid oxidation suppression. We used diverse bioinformatics approaches to evaluate the effect of seeds and their natural components on TP53. Compound-1 had the best pharmacophore match value (53.92), with others ranging from 50.75 to 53.92. Our docking result shows the top three natural compounds had the highest binding energies (-11.10 to -10.3 kcal/mol). The highest binding energies (-10.9 to -9.2 kcal/mol) compound bonded to significant sections in the target protein's active domains with TP53. Based on virtual screening, we select top phytocompounds for targets which highly fit based on pharmacophore score and observe these compounds exhibited potent antioxidant activity and inhibited cancer cell inflammation in the TP53 pathway. Molecular Dynamics (MD) simulations indicated that the ligand was bound to the protein with some significant conformational changes in the protein structure. This study provides novel insights into the development of innovative drugs for the treatment of cancer disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189520PMC
http://dx.doi.org/10.3389/fchem.2023.1174363DOI Listing

Publication Analysis

Top Keywords

targeting tp53
8
antioxidant activity
8
highest binding
8
binding energies
8
tp53
6
cancer
6
treasure trove
4
trove anti-cancer
4
anti-cancer compounds
4
compounds targeting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!