A General Autofluorescence Method to Characterize Polymerization Progress.

Angew Chem Int Ed Engl

Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.

Published: July 2023

An autofluorescence technique to characterize polymerization progress in real time/in line was developed, which functioned in the absence of typical fluorogenic groups on the monomer or polymer. The monomer dicyclopentadiene and polymer polydicyclopentadiene are hydrocarbons that lack traditional functional groups for fluorescence spectroscopy. Here, the autofluorescence of formulations containing this monomer and polymer during ruthenium-catalyzed ring-opening metathesis polymerization (ROMP) was harnessed for reaction monitoring. The methods fluorescence recovery after photobleaching (FRAP) and here-developed fluorescence lifetime recovery after photobleaching (FLRAP) characterized polymerization progress in these native systems-without requiring exogenous fluorophore. (Auto)fluorescence lifetime recovery changes during polymerization correlated linearly to degree of cure, providing a quantitative link with reaction progress. These changing signals also provided relative rates of background polymerization, enabling comparison of 10 different catalyst-inhibitor-stabilized formulations. Multiple-well analysis demonstrated suitability for future high-throughput evaluation of formulations for thermosets. The central concept of the combined autofluorescence and FLRAP/FRAP method may be extendable to monitoring other polymerization reactions previously overlooked for lack of an obvious fluorescence handle.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202304618DOI Listing

Publication Analysis

Top Keywords

polymerization progress
12
characterize polymerization
8
monomer polymer
8
recovery photobleaching
8
lifetime recovery
8
polymerization
7
general autofluorescence
4
autofluorescence method
4
method characterize
4
progress
4

Similar Publications

Introduction: The MAPT gene encodes Tau, a protein mainly expressed by neurons. Tau protein plays an important role in cerebral microtubule polymerization and stabilization, in axonal transport and synaptic plasticity. Heterozygous pathogenic variation in MAPT are involved in a spectrum of autosomal dominant neurodegenerative diseases known as taupathies, including Alzheimer's disease, Pick's disease, fronto-temporal dementia, cortico-basal degeneration and progressive supranuclear palsy.

View Article and Find Full Text PDF

The development of diverse microstructures has substantially contributed to recent progress in high-performance electromagnetic wave (EMW) absorption materials, providing a versatile platform for the modulation of absorption properties. Exploring multidimensional microstructures and developing tailored and gentle strategies for their precise optimization can substantially address the current challenges posed by relatively unclear underlying mechanisms. Here, a series of 2D/1D heterogeneous NiO@PPy composites featuring hollow hierarchical microstructures are successfully synthesized using a straightforward strategy combining sacrificial templating with chemical oxidative polymerization.

View Article and Find Full Text PDF

Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).

View Article and Find Full Text PDF

Peripheral nerve repair (PNR) is a major healthcare challenge due to the limited regenerative capacity of the nervous system, often leading to severe functional impairments. While nerve autografts are the gold standard, their implications are constrained by issues such as donor site morbidity and limited availability, necessitating innovative alternatives like nerve guidance conduits (NGCs). However, the inherently slow nerve growth rate (∼1 mm/day) and prolonged neuroinflammation, delay recovery even with the use of passive (no-conductive) NGCs, resulting in muscle atrophy and loss of locomotor function.

View Article and Find Full Text PDF

A ROS-responsive hydrogel encapsulated with matrix metalloproteinase-13 siRNA nanocarriers to attenuate osteoarthritis progression.

J Nanobiotechnology

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.

RNA interference (RNAi) and oxidative stress inhibition therapeutic strategies have been extensively utilized in the treatment of osteoarthritis (OA), the most prevalent degenerative joint disease. However, the synergistic effects of these approaches on attenuating OA progression remain largely unexplored. In this study, matrix metalloproteinase-13 siRNA (siMMP-13) was incorporated onto polyethylenimine (PEI)-polyethylene glycol (PEG) modified FeO nanoparticles, forming a nucleic acid nanocarrier termed si-Fe NPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!