Vaccine protection against COVID-19 wanes over time and has been impacted by the emergence of new variants with increasing escape of neutralization. The COVID-19 Variant Immunologic Landscape (COVAIL) randomized clinical trial (clinicaltrials.gov NCT05289037) compares the breadth, magnitude and durability of antibody responses induced by a second COVID-19 vaccine boost with mRNA (Moderna mRNA-1273 and Pfizer-BioNTech BNT162b2), or adjuvanted recombinant protein (Sanofi CoV2 preS DTM-AS03) monovalent or bivalent vaccine candidates targeting ancestral and variant SARS-CoV-2 spike antigens (Beta, Delta and Omicron BA.1). We found that boosting with a variant strain is not associated with loss in neutralization against the ancestral strain. However, while variant vaccines compared to the prototype/wildtype vaccines demonstrated higher neutralizing activity against Omicron BA.1 and BA.4/5 subvariants for up to 3 months after vaccination, neutralizing activity was lower for more recent Omicron subvariants. Our study, incorporating both antigenic distances and serologic landscapes, can provide a framework for objectively guiding decisions for future vaccine updates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187423 | PMC |
http://dx.doi.org/10.21203/rs.3.rs-2653179/v1 | DOI Listing |
Sci Rep
December 2024
Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.
SARS-CoV-2, the cause of COVID-19, primarily targets lung tissue, leading to pneumonia and lung injury. The spike protein of this virus binds to the common receptor on susceptible tissues and cells called the angiotensin-converting enzyme-2 (ACE2) of the angiotensin (ANG) system. In this study, we produced chimeric Macrobrachium rosenbergii nodavirus virus-like particles, presenting a short peptide ligand (ACE2tp), based on angiotensin-II (ANG II), on their outer surfaces to allow them to specifically bind to ACE2-overexpressing cells called ACE2tp-MrNV-VLPs.
View Article and Find Full Text PDFBMC Infect Dis
December 2024
KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, Kenya.
Increased immune evasion by emerging and highly mutated SARS-CoV-2 variants is a key challenge to the control of COVID-19. The majority of these mutations mainly target the spike protein, allowing the new variants to escape the immunity previously raised by vaccination and/or infection by earlier variants of SARS-CoV-2. In this study, we investigated the neutralizing capacity of antibodies against emerging variants of interest circulating between May 2023 and October 2024 using sera from representative samples of the Kenyan population.
View Article and Find Full Text PDFVirology
December 2024
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Departamento de Biotecnología y Bioingeniería, Av. Instituto Politécnico Nacional 2508, Mexico City, 07360, Mexico; CINVESTAV, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Mexico. Electronic address:
COVID-19 infections continue due to accessibility barriers to vaccines and the emergence of SARS-CoV-2 variants. An effective, safe, accessible, and broad-spectrum vaccine is still needed to control the disease. We developed a multivalent protein subunit vaccine comprising antigens designed from a non-N-glycosylated region of the receptor-binding domain of the spike protein of SARS-CoV-2.
View Article and Find Full Text PDFImmunol Rev
December 2024
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.
The SARS-CoV-2 spike (S) protein has undergone significant evolution, enhancing both receptor binding and immune evasion. In this review, we summarize ongoing efforts to develop antibodies targeting various epitopes of the S protein, focusing on their neutralization potency, breadth, and escape mechanisms. Antibodies targeting the receptor-binding site (RBS) typically exhibit high neutralizing potency but are frequently evaded by mutations in SARS-CoV-2 variants.
View Article and Find Full Text PDFJ Mol Med (Berl)
December 2024
Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
In one of the earliest reports from China during COVID-19, it was noted that over 20% of patients hospitalized with the disease had significant elevations of troponin, a marker of myocardial tissue damage, that put them at a higher risk. In a hypothesis-independent whole exome sequencing (WES) study in hospitalized COVID-19 patients of diverse ancestry, we observed putative enrichment in pathogenic variants in genes known to be involved in the pathogenesis of cardiomyopathy. This observation led us to hypothesize that the observed high morbidity and mortality in these patients might be due to the presence of rare genetic factors that had previously been silent but became relevant as a consequence of the severe stress inflicted by an infection with SARS-CoV-2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!